AWO-LAD

Con 12-1-1 Doc # 1731

1601 Golden Aspen Drive • Suite 103 • Ames, Iowa 50010 • 800.433.3469 • www.foxeng.com

November 28, 2006

Ms. Nina Koger, Lead Engineer Energy & Waste Management Bureau Iowa Department of Natural Resources 502 East 9th Street Des Moines, Iowa 50319

RE:

2006 Annual Groundwater Quality Report

Ames-Story Environmental Landfill

85-SDP-13-91P P.N. 6004.320

Ms. Koger:

Find attached 1 copy of the 2006 Annual Groundwater Quality Report for the Ames-Story Environmental Landfill.

A copy of this data has been forwarded to Mr. William Fedeler, Ames-Story Environmental Landfill and IDNR Field Office #5 as required by the Permit.

Sincerely,

FOX ENGINEERING ASSOCIATES, INC.

Todd Whipple, CPG

Project Manager

61209_{12/01/05 AM} \$35

2006 ANNUAL GROUNDWATER QUALITY REPORT

OF

THE AMES-STORY ENVIRONMENTAL LANDFILL 85-SDP-13-91P AMES, IOWA

by:

FOX Engineering Associates, Inc. 1601 Golden Aspen Drive, Suite 103 Ames, Iowa 50010 (515) 233-0000

NOVEMBER, 2006

November 17, 2006

Ms. Nina Koger, Lead Engineer IDNR – Energy & Waste Management Bureau Wallace State Office Building 502 East 9th Street Des Moines, Iowa 50319

RE: AMES/STORY ENVIRONMENTAL LANDFILL ANNUAL GROUNDWATER QUALITY REPORT IDNR #85-SDP-13-91P FOX PN 6004.320

Dear Ms. Koger:

This Annual Report has been prepared in accordance with IAC 567-114.26(8)d. The semiannual inspection reports have been submitted to IDNR in accordance with the General Provisions of the Permit. The following information and comments are presented in accordance with the IAC section referenced above.

1. ANNUAL REPORT SUPPLEMENT

The report supplements are addressed in the numbered responses below as set out in the December 6, 2004 IDNR comment letter (Appendix A).

1) The geology and hydrogeology are described in the text included in Appendix B.

Previous land use is undeveloped land.

The solid waste stream includes construction and demolition waste from 1991 to the present.

- 2) The approved monitoring network is illustrated in Sheet 1.
- 3) The Water Table Contour Map is included as Sheet 1.
- 4) A Potentiometric Map of the Upper Aquifer is included as Figure 2.
- 5) Leachate collection exists above the liner at this facility. Leachate mounding is not apparent. The four (4) leachate pizometers that exist in the north portion of the site do not exhibit excessive leachate head.

The upgradient water table monitoring well (MW-37) is situated in the east part of the site and does not appear to be impacted hydrologically by mounded leachate. Water movement appears to be from east to west at MW-37 (Figure 1). The remainder of the

monitoring network appears to be situated to effectively detect any migration to downgradient wells.

The upgradient upper aquifer monitoring well for the entire site (MW-36) does not demonstrate impact due to the fill areas. The remainder of the upper aquifer monitoring network appears to be situated effectively to detect any migration to downgradient upper aquifer wells.

- 6) Current year water quality data is included in Appendix C. Current and historic water quality data is included in Appendix D.
- 7) The upgradient wells appear to be functioning effectively as valid upgradient sampling points based on the hydrogeology and the water quality results.

The approved Hydrologic Monitoring System Monitoring Plan includes six (6) surface water monitoring points. Based on surface water movement and water quality, the surface water monitoring points appear to be functioning effectively as valid upgradient and downgradient sampling points.

- 8) Control limits are calculated in the spreadsheets included in Appendix D. Comparison of the downgradient water quality data to the calculated limits is presented in the text below.
- 9) Graphical representations of water quality data, calculated control limits, and EPA Maximum Contaminant Limits (MCL's) are included in Appendix D. Comparison of the downgradient water quality data to the calculated limits is presented in the text below.
- 10) Discussion of the groundwater quality data is presented in the text below.
- 11) Discussion of the surface water quality data is made in the text below.
- 12) Conclusions and recommendations are included in a separate section at the end of this report.

2. ENVIRONMENTAL EFFECTS

a. Groundwater

The Hydrologic Monitoring System Plan (HMSP) for the site is approved by Special Provision X.7 of the current SDP Permit, dated November 24, 2003 (Appendix A). Conditions in the Permit require semi-annual and annual sampling to be performed at designated monitoring wells at the site. Trenches 1 through 4 are located in the north portion of the site and filling occurred between 1991 and 1999, with additional fill yet to be placed. It follows that all first year quarterly sampling episodes have been completed for the Trenches 1 through 4.

Trenches 5 & 6 are located in the south portion of the site. Trench 5 construction was completed and approved for waste acceptance June 16, 1999. Trench 6 construction was completed and approved for waste acceptance May 26, 2000. First year quarterly water sampling in Trench 5 & 6 was completed in March, 2001.

The site (both the north and south fill areas) is characterized as having two (2) groundwater systems that are monitored as part of the HMSP; the Water Table system and the Upper Aquifer sand layer system. MW-36 and MW-37 are the upgradient monitoring points for the Upper Aquifer System and the Water Table System, respectively.

Chemical analytical results for 2006 and Summary Tables are included in Appendix C. The chemical analytical data is also presented graphically by chemical compound over time in Appendix D. The statistical computations are included in the tables in Appendix D. Graphs of the concentration versus time for the sampling points illustrate those compounds that exceed statistical limits. Review of the graphs and data indicate the following observations.

Water Table System - Test results from upgradient MW-37 (Appendix D.1) indicate detectable concentrations of arsenic, barium, COD, chloride, iron (exceeding the Secondary MCL), magnesium, nitrogen ammonia, TOX, and zinc. The presence of the noted compounds in the upgradient well may indicate that the compounds are migrating onto the site from an off-site source(s), or are endemic to the region.

Downgradient MW's indicate detection of compounds at concentrations that do not exceed primary MCL's. The compounds that exceed statistical limits are summarized by monitoring well below:

MW-6	Barium, chloride, pH (12/00), temperature (9/05), and TOX
MW-28	COD, chloride, magnesium (3/92), pH (3/96, 9/94), temperature
	(9/05, 9/06), and TOX
MW-23	Barium, COD (3/95), chloride, lead (10/91), pH (3/05), and TOX
MW-24	Barium, COD (9/92), chloride, lead (4/91), and TOX (9/93)
MW-31	Barium, COD, chloride, lead (10/91), conductivity (3/06), pH (9/02,
	3/05), and TOX
MW-25	Barium, COD (prior to 3/95), chloride, lead (10/91), pH, and TOX
MW-33	Barium, COD, chloride, iron (3/94, 9/95), ammonia, pH, and TOX
MW-34	Barium, COD, chloride, conductivity (3/01), lead (10/91), ammonia
	(3/96), pH (3/98), and TOX
MW-35	Barium, COD (3/03, 9/04), chloride, pH (6/97, 3/98), and TOX
MW-39	Arsenic (12/00), barium, COD (3/05), chloride, pH (6/00, 3/06), and
	TOX (9/00, 9/06)
MW-40	Barium, chloride pH (6/00, 3/06), and TOX (9/05)
MW-43	Barium, COD, chloride, ammonia, pH (6/00, 3/05), and TOX

Indicator compounds such as chlorides, COD, and TOX have been found to exceed statistical control limits in a number of the downgradient MW's. This is documented

during the initial sampling episodes performed in 1991 and 1992 and is not attributed to leachate migration. In addition, barium, iron, magnesium, and nitrogen ammonia have also been detected in several downgradient wells. However, due to the presence of detectable concentrations of these compounds in the upgradient wells, these results have not been interpreted as a release of leachate into the groundwater. The lead concentrations detected in 1991 appear to be anomalous.

Upper Aquifer System - Test results from upgradient MW-36 (Appendix D.2) indicate detectable concentrations of arsenic, barium, COD, chloride, iron (in excess of secondary MCL's), magnesium, nitrogen ammonia, TOX, and zinc. The presence of the noted compounds in the upgradient well may indicate that the compounds are migrating onto the site from an off-site source(s), or are endemic to the region.

Downgradient MW's indicate detection of compounds at concentrations that exceed the primary MCL for arsenic at MW-8, MW-30, MW-38, MW-41, and MW-42. The secondary MCL for iron was exceeded at most wells for various sampling episodes. The secondary MCL for chloride was exceeded at MW-33 in March, 2003; at MW-35 in March, 2006; and at MW25 in September, 2006. The compounds that exceed statistical limits are summarized by monitoring well below:

MW-7	arsenic (prior to 3/01), barium, COD (9/05), iron, pH (12/00), and
MW-8	temperature (9/05) arsenic, barium, chloride (3/04), iron, ammonia, pH (12/00, 9/02), temperature (9/05, 9/06), TOX (9/02, 9/06), and zinc (3/01)
MW-29	arsenic, barium, COD (prior to 3/95), conductivity (9/00), lead (10/91), iron (10/91), pH (3/95), temperature (9/05, 9/06), TOX (4/91, 9/06), and zinc (3/01 & 3/02).
MW-30	arsenic, barium (4/91), COD (prior to 3/95), chloride (3/96), conductivity, lead (10/91), pH, TOX (4/91, 9/06)
MW-32	COD, chloride, conductivity, iron, magnesium, lead (4/91 & 10/91), and TOX
MW-25	COD, chloride, conductivity, lead (10/91), magnesium, pH, and TOX
MW-33	COD, chloride, conductivity, iron, magnesium, nitrogen ammonia, pH, and TOX
MW-34	COD, chloride, conductivity, iron, lead (10/91), magnesium, nitrogen ammonia (prior to 9/98), pH, temperature, and TOX
MW-35	COD (3/03, 9/04), chloride, conductivity, iron (9/97), magnesium, pH, temperature (9/05), and TOX (9/02)
MW-38	arsenic, barium, COD (9/04), chloride, conductivity, iron (3/04), pH (6/00, 9/02)
MW-41	arsenic, barium, iron, pH (6/00), temperature (9/05, 9/06), TOX (9/06), and zinc (12/00)
MW-42	arsenic, barium, COD (9/04), chloride, conductivity, iron, pH (6/00), lead (6/00), TOX (9/06)

Indicator compounds such as chlorides, COD, conductivity, and TOX have been found to exceed statistical control limits in a number of the downgradient MW's. This

is documented during the initial sampling episodes performed in 2000 and is not attributed to leachate migration. In addition, arsenic, barium, iron, magnesium, and nitrogen ammonia have also been detected in excess of statistical control limits in several downgradient wells. However, due to the presence of detectable concentrations in the upgradient wells, these results have not been interpreted as a release of leachate into the groundwater. The detected lead concentrations appear to be anomalous.

Surface Water - Test results from upgradient SMP-1 (Appendix D.3) indicate detectable concentrations of barium, COD, chloride, iron (in excess of the secondary MCL), lead, magnesium, and TOX. The presence of the noted compounds at the upgradient monitoring point may indicate that the compounds are endemic to the stream.

Downgradient Surface Water sampling points indicate detection of compounds at concentrations that exceed the primary MCL for arsenic at SMP-4 and SMP-6. The secondary MCL for iron is commonly exceeded at SMP-6. The secondary MCL for chloride was exceeded at SMP-1 and SMP-2 in March, 2006. The compounds that exceed statistical limits are summarized by monitoring point below:

SMP-2	COD (3/03), chloride (3/06), conductivity (3/06), pH, and lead (10/91)
SMP-3	barium (10/91), magnesium
SMP-4	arsenic (6/00, 9/02), barium (6/00, 9/02), COD, conductivity (10/02,
	3/04), copper (9/02), magnesium (6/00), and ammonia
SMP-5	barium (9/02), and ammonia
SMP-6	arsenic (prior to 3/02), barium (prior to 3/02), iron, magnesium, pH
	(6/00), temperature (6/00), and ammonia (9/02 & 3/04)

3. STATISTICAL COMPUTATIONS

Statistical computations are summarized on the spreadsheets/graphs in Appendix D. It appears there is significant variation in background levels of certain measured constituents in upgradient groundwater and aquifer monitoring wells. The presence of the noted compounds in the upgradient well may indicate migration (run-on) of several compounds from an off-site source(s) or may indicate that the compounds are endemic to the area.

As stated in the May 5, 1992, Semi-Annual Report, the <u>initial</u> background concentrations of certain parameters were higher in downgradient monitoring wells than in the corresponding upgradient monitoring wells <u>prior to acceptance of waste(s)</u> at this landfill. Discussions of site conditions are offered in the May 5, 1992, Semi-Annual Report (Appendix E) and should be referenced.

4. WELL MAINTENANCE AND RE-EVALUATION PLAN

Monitoring Well Performance Evaluation Reports dated June 10, 1993; March 30, 1998; and June, 2003 were prepared and submitted in accordance with IAC 567-114.21. The 2003 Report (most recent) concluded that the integrity of all MW's was intact, and that no changes

in the HMSP were recommended. Monitoring well reevaluation is tentatively scheduled for June, 2008, and will again include monitoring wells associated with Trenches 1-6.

Review of the water elevation data for 2006 does not indicate excessive variability compared to historic water elevation data. Water elevation data is summarized in Appendix F. Based on the available water elevation data, the assessment of well conditions, and the hydrologic conditions at the site, the semi-annual water level measurements are interpreted to be sufficient to gauge notable changes in the site hydrology. The September, 2006 Water Table Contour Map and the September, 2006 Potentiometric Water Surface Map for the Upper Aquifer Sand Layer are included as Figure 1 and Figure 2, respectively.

5. LCS PERFORMANCE

The leachate control system (LCS) consists of a series of gravity collection pipes that underlie the trench fills. Trenches 1 through 4 are located north of a topographic divide and the LCS drain north to a City of Ames interceptor sanitary sewer located along the stream to the north. The LCS in Trenches 5 and 6 are located south of the topographic divide and drains south to a City of Ames interceptor sanitary sewer located along the railroad to the south.

Filling and capping of a portion of the north end of Trenches 1 – 4 is complete. As required by the approved Development and Operational Plans (DOPS), leachate head monitoring wells have been installed at the downgradient point within each Trench. The four (4) leachate piezometers were installed in May, 2003.

Leachate Head elevations at the four (4) piezometers has been recorded routinely since installation and are summarized in the Table and graphs included in Appendix G. In summary, the leachate head elevation data demonstrates that the LCS is functioning as intended. The piezometers in Trench 1 & 2 are most frequently recorded as dry. The leachate thickness in Trench 3 has been recorded as ranging from 0.0 feet to 1.5 feet. The leachate thickness in Trench 4 has been recorded as ranging from 1.0 feet to 3.74 feet.

Based on information provided by the City of Ames (Appendix H), pretreatment testing results for May 22, 2006; and October 24, 2006 are summarized in the Table below.

Chemical analysis of the leachate indicates that all parameters are within permit limits. The volume of leachate conveyed to the Ames Water Pollution Control Plant is reported as 2,244 gallons per month (approximately 26,932 gpy).

The leachate system was cleaned by Clouser Plumbing, Ames, in September, 2005 as per IAC 567-114.26(11)a.8. Line cleaning is tentatively scheduled again for the fall/winter of 2008, depending on accessibility.

Parameter	Permit Limit (mg/L)	Allowance Discharge (mg/L)	05/22/06 Results (mg/L)	10/24/06 Results (mg/L)
PH	6.0-10.0	·	NR	7.2
TSS	1,500/300		14	NR
Ammonia- N	200/40		42	NR
COD	2,500/250	1,500	450	560
CBOD5	/250		NR	<30
TKN	/40	250	NR	50
Zinc	0.11		NR	<0.03

6. EXPLOSIVE GAS MONITORING

Explosive gas monitoring was performed quarterly through September, 2006, per IAC 567-114.26(15). Results of the explosive gas monitoring indicate that explosive gases were within applicable limits in site structures and along the entire site perimeter. In addition, carbon monoxide (CO) and hydrogen sulfide (H_2S) gases were undetected. Gas monitoring results are summarized in the table in Appendix I.

7. RESPONSE TO MAY 11, 2006 IDNR LETTER

The May 11, 2006 IDNR Letter was issued as part of on-going correspondence related to results for total organic halides/halogens (TOX) in several downgradient wells at the site. Routine and supplemental sampling MW-31 and MW-33 in 2006 indicates that the reported TOX concentrations are not elevated as reported in September, 2005. As summarized in Section 2, above, the reported concentration of TOX in most downgradient monitoring wells exceeds the statistically calculated limit in the upgradient well data. This condition has been recognized and reported since at least 1992 (see Appendix E) and is not attributed to leachate impact. The presence of organic halide compounds may attributable to the presence of the chloride (a halide) as an endemic water quality component in groundwater in both upgradient and downgradient positions across the site. Chlorinated hydrocarbons (man-made sources) are not recorded in the perimeter wells and is not interpreted to be the source of the detectible TOX concentrations. Submittal of a Groundwater Quality Assessment Plan is considered unwarranted at this time.

8. RECOMMENDATIONS

- a. Continue to perform semi-annual and annual sampling episodes in accordance with Special Provision X.7 of the Permit.
- b. Continue to perform semi-annual water level measurements in March and September of each year and reevaluate the data in the Annual Groundwater Quality Report in November of each year.
- c. Continue to perform quarterly leachate level measurements and continue to reevaluated in the Annual Groundwater Quality Report/Leachate Control System Performance Evaluation in November of each year.
- d. The leachate collection lines in Trenches 1 through 6 should be cleaned as necessary according to IAC 567-114.26(11)a.8 during the fall/winter of 2008.
- e. Continue to perform quarterly explosive gas monitoring and report the results in the Annual Groundwater Quality Report each November.

If the Department has any questions or if additional information is needed, contact Mr. William Fedeler, Owner, or myself at the FOX Engineering office in Ames.

APPENDIX A

Permit, Permit Amendment, and Correspondence

STATE OF IOWA

OMAS J. VILSACK, GOVERNOR
SALLY J. PEDERSON, LT. GOVERNOR

DEPARTMENT OF NATURAL RESOURCES

JEFFREY R. VONK, DIRECTOR

May 11, 2006

William K. Fedeler P.O. Box 2483 Ames, IA 50010

RE: Ames-Story Environmental C&D Landfill, Inc.
2005 Annual Water Quality Report
Permit No. 85-SDP-13-91P

Dear Mr. Fedeler:

We have reviewed your letter dated April 11, 2006, as submitted by FOX Engineering Associates, Inc. regarding the Department's original comment letter pertaining to the 2005 Annual Water Quality Report.

After review of your responses, the Department approves of your proposal to review the need for a Groundwater Quality Assessment Work Plan until receipt of the 2006 TOX data, since the September 22, 2005 TOX data is considered questionable. Accordingly, the permit holder is required to include a Groundwater Quality Assessment Work Plan in the 2006 AWQR should the TOX concentrations remain elevated in any of the downgradient wells above the control limits at levels that are indicative of leachate migration per 567 IAC 114.26(9).

In future sampling events, if any of the reported laboratory data is questionable due to QA/QC concerns, the permit holder is directed to resample the well and reanalyze for the questionable constituents in a reasonable timeframe in order to prevent unnecessary datagaps.

If you have any questions, please contact me at (515) 281-8045.

Sincerely,

Michael B. "Mick" Leat

Environmental Engineer

Energy and Waste Management Bureau

ML\AMESCD8.doc

copy: Douglas J. Luzbetak, P.E.
FOX Engineering Associates, Inc.
1601 Golden Aspen Drive, Suite 103
Ames, IA 50010

DNR Field Office #5 Nina Koger, DNR Mick Leat, DNR

STATE OF IOWA

THOMAS J. VILSACK, GOVERNOR SALLY J. PEDERSON, LT. GOVERNOR

DEPARTMENT OF NATURAL RESOURCES

JEFFREY R. VONK, DIRECTOR

October 14, 2005

William K. Fedeler P.O. Box 2483 Ames, IA 50010

RE: Ames-Story Environmental C&D Landfill, Inc. Permit No. 85-SDP-13-91P Amendment #3

Dear Mr. Fedeler:

Enclosed is Amendment #3 to the permit issued on October 14, 2005, for the Ames-Story Environmental C&D Landfill, Inc. The amendment and approved plans must be kept with the permit and the approved plans at the sanitary disposal project in accordance with solid waste rule 567 IAC 114.26(2)"c". Please review this amendment with your operators, as they must become familiar with it.

The enclosed amendment incorporates the revised final elevation drawing and cross section, dated September 12, 2005 and submitted by Fox Engineering Associates; as part of the permit documents.

If you have any questions, you may contact me at 515/281-8045.

Sincerely,

Michael B. "Mick" Leat

Environmental Engineer

Energy & Waste Management Bureau

ML\AmesStoryEnv03amd3X.doc

Attachment

copy: Douglas J. Luzbetak, P.E.

FOX Engineering Associates, Inc.
1601 Golden Aspen Drive, Suite 103
Ames, IA 50010

DNR Field Office #5 Nina Koger, DNR Mick Leat, DNR

IOWA DEPARTMENT OF NATURAL RESOURCES AMENDMENT #3

Issued by:

Michael Leat

Environmental Services Division

For: the Director

Date Issued:

October 14, 2005

Permit number 85-SDP-13-91P, issued on November 24, 2003, for the Ames-Story Environmental C&D Landfill, Inc. is hereby amended by the following:

1. The revised final waste elevation drawing and cross section, labeled as Sheets 5 and 6, respectively, and dated September 12, 2005, as submitted by FOX Engineering Associates, Inc.; are hereby incorporated as part of the permit documents.

Accordingly, delete the text in Special Provision #2(a) and replace with the following:

2a. The approved site vertical height shall not exceed a maximum waste elevation of 1000 feet in the North waste area and 985 feet in the South waste area.

RECEIVED HEC 0 8 2004

1221

STATE OF IOWA

Thomas J. Vilsack, governor Sally J. Pederson, Lt. governor DEPARTMENT OF NATURAL RESOURCES

JEFFREY R. VONK, DIRECTOR

December 6, 2004

William K. Fedeler P.O. Box 2483 Ames, IA 50010

RE: Ames-Story Environmental C&D Landfill, Inc. 2004 Annual Water Quality Report Permit No. 85-SDP-13-91P

Dear Mr. Fedeler:

We have reviewed the 2004 Annual Water Quality Report (AWQR), dated November 30, 2004, as submitted on your behalf by FOX Engineering Associates, Inc.

Based on our review of the report, the Department authorizes continued implementation of the recommended monitoring program, as follows:

1. Continued semiannual water quality analysis shall be conducted at all approved monitoring points as defined in the Special Provisions of the permit and/or any subsequent amendments.

In addition, all future AWQRs should include the following, starting with November 30, 2005 report:

- 1. A brief history of the site that describes the geology, hydrogeology, previous land-use, and solid waste streams.
- 2. An 11"x17" scaled site map delineating the approved monitoring network. All groundwater and surface water monitoring points shall be conspicuously marked and show its function as an upgradient, background, or downgradient sampling location.
- 3. A groundwater table contour map to evaluate groundwater pathways and to evaluate potential groundwater mounding. Data from leachate piezometers or wells should be included on the groundwater table contour map.
- 4. A potentiometric map should be included if a confined unit is being monitored.
- 5. A discussion of potential groundwater mounding and its influence on upgradient and downgradient wells.
- 6. A table showing all current and historic water quality data.

- 7. An evaluation of all upgradient groundwater and surface water points to determine whether they are currently functioning as a valid background/upgradient sampling points based on the groundwater table contour map and water quality data results.
- 8. Control limit calculations for each upgradient or background groundwater sampling point and whether the corresponding downgradient monitoring point falls within the calculated limits.
- 9. Graphical representation of water quality data in readable form. The current control limits and, if applicable, the Maximum Contaminant Levels (MCLs) should be clearly shown on each graph.
- 10. A discussion of the water quality data results stating whether potential leachate migration is occurring beyond the waste boundary at any groundwater monitoring point. If MCLs are exceeded, provide information on potential receptors.
- 11. A discussion, as applicable, of the potential impact of the landfill on surface water quality.
- 12. Conclusions and recommendations for future monitoring.

If you have any questions, you may contact me at (515) 281-8968.

Sincerely,

Jeff Sjirmons

Environmental Engineer

Energy and Waste Management Bureau

JNS\JNS\J:2004WaterQualityltrAmesStoryEnv.doc

copy: Douglas J. Luzbetak, P.E.

FOX Engineering Associates, Inc. 1601 Golden Aspen Drive, Suite 103

Ames, IA 50010

DNR Field Office #5

Nina Koger, DNR

Jeff Simmons, DNR

RECEIVED DEC J a 2004

DJL

STATE OF IOWA

THOMAS J. VILSACK, GOVERNOR
SALLY J. PEDERSON, LT. GOVERNOR

DEPARTMENT OF NATURAL RESOURCES
JEFFREY R. VONK, DIRECTOR

December 6, 2004

William K. Fedeler P.O. Box 2483 Ames, IA 50010

RE: Ames-Story Environmental C&D Landfill, Inc. Permit No. 85-SDP-13-91P Amendment #2

Dear Mr. Fedeler:

Enclosed is Amendment #2 to the permit issued on November 24, 2003, for the Ames-Story Environmental C&D Landfill, Inc. The amendment and approved plans must be kept with the permit and the approved plans at the sanitary disposal project in accordance with solid waste rule 567 IAC 114.26(2)"c". Please review this amendment with your operators, as they must become familiar with it.

The enclosed amendment incorporates a reduction in the frequency of taking leachate elevation measurements related to a request contained in the 2004 Annual Water Quality Report dated November 30, 2004, as submitted by FOX Engineering Associates, Inc.; as part of the permit documents.

If you have any questions, you may contact me at 515/281-8968.

Sincerely,

Jeff Signmons

Environmental Engineer

Energy & Waste Management Bureau

JNS\JNS\J: AmesStoryEnv03amd2X.doc

Attachment

copy: Douglas J. Luzbetak, P.E. FOX Engineering Associates, Inc.

1601 Golden Aspen Drive, Suite 103

Ames, IA 50010

DNR Field Office #5

Nina Koger, DNR

Jeff Simmons, DNR

IOWA DEPARTMENT OF NATURAL RESOURCES AMENDMENT #2

ARL VELETAL PROPERTY AND A SERVICE OF THE SERVICE

Issued by:

Jeff/Simmons

Environmental Services Division

For: the Director

Date Issued:

December 6, 2004

Permit number 85-SDP-13-91P, issued on November 24, 2003, for the Ames-Story Environmental C&D Landfill, Inc. is hereby amended by the following:

1. A reduction in the frequency of taking leachate elevation measurements related to a request contained in the 2004 Annual Water Quality Report dated November 30, 2004, as submitted by FOX Engineering Associates, Inc.; is hereby incorporated as part of the permit documents.

Accordingly, delete the text in Special Provision #9(d) and replace with the following:

9d. Leachate head levels and elevations shall be measured semiannually at all piezometers and the volume of leachate collected and transported to the treatment works recorded. Records of leachate contaminants testing required by the treatment works and any NPDES permit for on-site treated leachate discharges shall be maintained.

RECEIVED DCT 1 5 2004

STATE OF IOWA

THOMAS J. VILSACK, GOVERNOR SALLY J. PEDERSON, LT. GOVERNOR DEPARTMENT OF NATURAL RESOURCES JEFFREY R. VONK, DIRECTOR

October 12, 2004

L5W

2562 formial forclass

William K. Fedeler P.O. Box 2483. Ames, IA 50010

RE: Ames-Story Environmental C&D Landfill, Inc. 2003 Annual Water Quality Report Permit No. 85-SDP-13-91P

Dear Mr. Fedeler:

We have reviewed the 2003 Annual Water Quality Report (AWQR), dated November 24, 2003, as submitted on your behalf by FOX Engineering Associates, Inc.

Based on our review of the report, the Department authorizes continued implementation of the recommended monitoring program, as follows:

Continued semiannual water quality analysis shall be conducted at all approved monitoring points as defined in the Special Provisions of the permit and/or any subsequent amendments.

In addition, all future AWQRs should include the following, starting with November 30, 2005 report:

- 1. A brief history of the site that describes the geology, hydrogeology, previous land-use, and solid waste streams.
- 2. An 11"x17" scaled site map delineating the approved monitoring network. All groundwater and surface water monitoring points shall be conspicuously marked and show its function as an upgradient, background, or downgradient sampling location.
- 3. A groundwater table contour map to evaluate groundwater pathways and to evaluate potential groundwater mounding. Data from leachate piezometers or wells should be included on the groundwater table contour map.
- 4. A potentiometric map should be included if a confined unit is being monitored.
- 5. A discussion of potential groundwater mounding and its influence on upgradient and downgradient wells.
- 6. A table showing all current and historic water quality data.

- 7. An evaluation of all upgradient groundwater and surface water points to determine whether they are currently functioning as a valid background/upgradient sampling points based on the groundwater table contour map and water quality data results.
- 8. Control limit calculations for each upgradient or background groundwater sampling point and whether the corresponding downgradient monitoring point falls within the calculated limits.
- 9. Graphical representation of water quality data in readable form. The current control limits and, if applicable, the Maximum Contaminant Levels (MCLs) should be clearly shown on each graph.
- 10. A discussion of the water quality data results stating whether potential leachate migration is occurring beyond the waste boundary at any groundwater monitoring point. If MCLs are exceeded, provide information on potential receptors.
- 11. A discussion, as applicable, of the potential impact of the landfill on surface water quality.
- 12. Conclusions and recommendations for future monitoring.

If you have any questions, you may contact me at (515) 281-8968.

Sincerely,

Jeff Simmons

Environmental Engineer

Energy and Waste Management Bureau

JNS\JNS\J:2003WaterQualityltrAmesStoryEnv.doc

MMM

copy: Douglas J. Luzbetak, P.E.

FOX Engineering Associates, Inc.

1601 Golden Aspen Drive, Suite 103

Ames, IA 50010

DNR Field Office #5

Nina Koger, DNR

Jeff Simmons, DNR

STATE OF IOWA

THOMAS J. VILSACK, GOVERNOR SALLY J. PEDERSON, LT. GOVERNOR DEPARTMENT OF NATURAL RESOURCES

JEFFREY R. VONK, DIRECTOR

January 22, 2004

RECEIVED JAN 2 9 2004

William K. Fedeler P.O. Box 2483 Ames, IA 50010

RE: Ames-Story Environmental C&D Landfill, Inc. Permit No. 85-SDP-13-91P Amendment #1

Dear Mr. Fedeler:

Enclosed is Amendment #1 to the permit issued on November 24, 2003, for the Ames-Story Environmental C&D Landfill, Inc. The amendment and approved plans must be kept with the permit and the approved plans at the sanitary disposal project in accordance with solid waste rule 567 IAC 114.26(2)"c". Please review this amendment with your operators, as they must become familiar with it.

The enclosed amendment incorporates: 1) The construction documentation forms for leachate head piezometers LPZ-T1-1, LPZ-T2-1, LPZ-T3-1, and LPZ-T4-1, as submitted by FOX Engineering Associates, Inc. on November 24, 2003; and 2) The request letter from FOX Engineering Associates, Inc. dated December 18, 2003, concerning the waste tonnage calculation methodology; as part of the permit documents.

Note that the amendment contains conditions that may require a response or action by you which, if not properly complied with, may prompt enforcement action by this department.

If you have any questions, you may contact me at 515/281-8968.

Sincerely,

Jeff Signmons

Environmental Engineer

Energy & Waste Management Bureau

Mully

JNS\JNS\J:AmesStoryEnv03amd1X.doc

Attachments

copy: Douglas J. Luzbetak, P.E.
FOX Engineering Associates, Inc.
1601 Golden Aspen Drive, Suite 103
Ames, IA 50010

DNR Field Office #5

Nina Koger, DNR

Jeff Simmons, DNR

IOWA DEPARTMENT OF NATURAL RESOURCES AMENDMENT #1

Issued by:

Nina M. Koger

Environmental Services Division

For: the Director

Date Issued:

January 22, 2004

Permit number 85-SDP-13-91P, issued on November 24, 2003, for the Ames-Story Environmental C&D Landfill, Inc. is hereby amended by the following:

- 1. The documentation forms for the construction of leachate head piezometers LPZ-T1-1, LPZ-T2-1, LPZ-T3-1, and LPZ-T4-1 as submitted by FOX Engineering Associates, Inc. on November 24, 2003; are incorporated as part of the permit documents.
- 2. The waste tonnage calculation methodology described in the letter from FOX Engineering Associates, Inc. dated December 18, 2003; is hereby approved and incorporated as part of the permit documents. The following conditions shall apply:
 - a. The permit holder shall be responsible for annually weighing on an off-site certified scale, a minimum of twelve of each type of vehicle and container waste load to use as a basis for determining the average waste tonnage for the various types of waste holding vehicles that utilize the landfill.
 - b. The permit holder shall be responsible for attaching supporting documentation for tonnage calculations to the Solid Waste Fee Schedule and Retained Fee Report on a semiannual basis, commencing with the report due April 1, 2004.

STATE OF IOWA

THOMAS J. VILSACK, GOVERNOR SALLY J. PEDERSON, LT. GOVERNOR

DEPARTMENT OF NATURAL RESOURCES

JEFFREY R. VONK, DIRECTOR

November 24, 2003

William K. Fedeler P.O. Box 2483 Ames, IA 50010

RE: Ames-Story Environmental C&D Landfill, Inc. Permit No. 85-SDP-13-91P

Permit Renewal

Dear Mr. Fedeler:

Enclosed is the renewed permit for the Ames-Story Environmental C&D Landfill, Inc. The permit and the approved plans must be kept at the sanitary disposal project in accordance with solid waste rule 567 IAC 114.26(2)"c". Please review the permit with your operators, as they must become familiar with it.

Note that the permit contains special provisions that may require a response or action by you which, if not properly complied with, may prompt enforcement action by this department.

Please note that Special Provision #11 requires that by January 1, 2004, either an on-site scale is provided or a plan is submitted that details an alternative method for determining waste tonnage, such as annually weighing several representative truckloads of waste at a certified scale to use as a basis for establishing the waste conversion weights for different types of trucks.

The submitted application was reviewed and placed in the permit record files. No plan updates were submitted with the application.

If you have any questions regarding this permit, please contact me at 515/281-8968 or Nina Koger at 515/281-8986.

Sincerely.

Jeff \$1mmons

Environmental Engineer

Energy & Waste Management Bureau

JNS\JNS\J:AmesStoryEnv03pmtX.doc

Attachment

copy: Douglas J. Luzbetak, P.E.

FOX Engineering Associates, Inc. 1601 Golden Aspen Drive, Suite 103

Ames, IA 50010

DNR Field Office #5

Nina Koger, DNR

Jeff Simmons, DNR

IOWA DEPARTMENT OF NATURAL RESOURCES SANITARY DISPOSAL PROJECT PERMIT

I. Permit Number: 85-SDP-13-91P

Ames-Story Environmental C&D Landfill, Inc.

II.

Permitted Agency:

Ames-Story Environmental Landfill, Inc.

III.

Project Location:

Parcel "A" [Lot 3 and the West 100 feet of Lot 2, Dayton Road Development Subdivision] and approximately the West 508.1 feet of Lot 1 in Block 5, Landfill Addition; both parcels located in the corporate limits of the city of Ames and in a portion of the E1/2 of

Section 1, T83N, R24W, Story County, Iowa

IV. Responsible Official

Name:

William K. Fedeler

Address:

P.O. Box 2483 Ames, IA 50010

Phone:

515/232-5864

V. Licensed Design Engineer

Name:

Douglas J. Luzbetak, P.E.

Address:

FOX Engineering Associates, Inc.

1601 Golden Aspen Drive, Suite 103

Ames, IA 50010

Phone:

515/233-0000

FAX:

515/233-0103

Iowa License Number: 12654

VI.

Date Permit Issued:

November 24, 2003

VII.

Permit Expiration Date:

November 24, 2006

VIII.

Issued by:

Environmental Services Division

for the Director

IX. **General Provisions**

> The above named permitted agency is hereby authorized to operate a sanitary landfill at the described location in conformance with Iowa Code Chapter 455B, the rules pursuant thereto existing at the time of issuance, and any subsequent new rules which may be duly adopted, and any provisions contained in Section X of this permit.

> The project shall be operated according to the engineering plans and specifications approved by the Department of Natural Resources and these shall become a part of this permit. Any modifications or deviations from the engineering plans and specifications must have prior approval by the Department and an amendment to this permit issued.

The permitted service areas and conditions are specified in Special Provision #1 in Section X. Any deviations from the specified comprehensive planning documents, including changes in waste accepted from outside the permitted service areas, or any changes in the amount of waste, or changes in the waste stream shall have prior comprehensive planning approval by the Department.

The issuance of this permit in no way relieves the applicant of the responsibility for complying with all other local, state, and federal statutes, ordinances, and rules or other requirements applicable to the establishment and operation of this sanitary landfill.

No legal or financial responsibility arising from the construction or operation of the approved project shall attach to the State of Iowa or the Department of Natural Resources due to the issuance of this permit.

If title to this project is transferred, the new owner must apply to the Department for a transfer of this permit within thirty days of the date of title transfer. This permit is void sixty days after the date of title transfer unless the Department has transferred the permit.

The permit holder shall file a quarterly Solid Waste Fee Schedule and Retained Fee Report utilizing the Department's Form 542-3276 and tonnage fee payment, as applicable, for all wastes received, recycled/reused, and disposed at the sanitary landfill in accordance with Iowa Code section 455B.310. The quarterly report shall incorporate a detailed breakdown of all accepted solid waste authorized under this permit.

The permit holder is required to maintain records for the service area of tonnages accepted at this facility. Records shall be developed and maintained in such a way that tonnages from each county/state may be tracked in order to provide the local solid waste agency and the Department with accurate statistics from which generation/diversion rates will be derived. The reported tonnage shall be separated by Boone County, Greene County, Story County, Dallas County, and Calhoun County, consistent with the service area as detailed in Special Provision #1. The reports are due on a quarterly basis. The reports will be due January 1, April 1, July 1 and October 1 for the quarters ending September 30, December 31, March 31 and June 30, respectively. The permit holder shall mail the completed form to the Planning, Permitting and Engineering Services Section, Wallace State Office Building, 502 East Ninth Street, Des Moines, Iowa 50319. This reporting procedure supersedes any previous conflicting permit provisions.

The permit holder is prohibited from burying or burning yard waste as stipulated under 567 IAC 105.1(3) and Iowa Code sections 455D.9(1) and (6). Yard waste is defined in 567 IAC 100.2(455B,455D) as grass clippings, leaves, garden waste, brush and trees. Yard waste does not include tree stumps. Clearing and grubbing wastes generated at the landfill site and tree stumps may be buried. Only yard waste which has been separated at its source from other solid waste may be accepted by the permit holder for reuse purposes if authorized in Section X of this permit or after obtaining the necessary permit amendments. This prohibition supersedes any previous conflicting permit provisions.

Solid waste disposed at this site shall not exhibit free liquids, toxic or hazardous properties. No hazardous wastes as defined by Iowa Code section 455B.411 may be disposed at this landfill.

The permit holder is prohibited from disposing of nickel-cadmium, mercuric oxide, and sealed lead-acid household batteries, as specified in 567 IAC 145.1(455B,455D), effective beginning September 20, 1995.

This facility shall be staked as necessary and inspected on a semiannual basis by a professional engineer licensed in the State of Iowa. The engineer shall prepare a brief report describing the site's conformance

and nonconformance with the permit and the approved plans and specifications during the inspections. These reports shall be submitted by May 1 and November 1 each year to the Department's Main and local Field offices. The Department shall be notified if any inspection reveals any nonconformance with the permit and approved plans and specifications.

Failure to comply with Iowa Code Chapter 455B, or any rule of order promulgated pursuant thereto, or any or all provisions of this permit may result in 1) a civil penalty of up to \$5000 for each day of violation, pursuant to Iowa Code section 455B.307, or 2) the suspension or revocation of this permit, pursuant to Iowa Code section 455B.305.

X. Special Provisions

1. The permit holder is authorized to accept construction and demolition wastes, diseased trees, tree stumps, nonhazardous petroleum-contaminated soils, and asbestos for disposal in accordance with the approved Central Iowa Solid Waste Management Association Comprehensive Plan, Part I. The Comprehensive Plan, Part I as approved by the Department on March 31, 2003; any approved amendments to the plan; and the latest plan update, are hereby incorporated as permit plan documents.

The permitted service area includes: All cities and the unincorporated area, including Woodward State Hospital, in Boone County; all cities, excluding Jefferson, and the unincorporated area in Greene County; the cities of Ames, Cambridge, Colo, Gilbert, Huxley, Kelley, Maxwell, McCallsburg, Nevada, Roland, Slater, Story City, Zearing and the unincorporated area in Story County; the cities of Bouton, Granger, and Woodward in Dallas County; and the cities of Farnhamville, Lohrville, and Somers in Calhoun County.

In accordance with 567 IAC 101.8(2), the permit holder shall submit the Comprehensive Solid Waste Management Plan, Part I update to the Department approved plan by November 1, 2005.

- 2. The permit holder shall develop and operate the site in accordance with: 1) The Revised Development Plan (RDP) dated March 29, 1996, as submitted by FOX Engineering Associates, Inc. and approved on May 14, 1996; and 2) Revised Figure 20 dated September 1998, Revised Figure 28 dated July 2, 1998, and Plan Sheet 4 updated September 24, 1998, all as submitted by FOX Engineering Associates, Inc. and approved on September 29, 1998.
 - a. The approved site vertical height shall not exceed a maximum waste elevation of 970 in the North central waste area and 967 feet in the South central waste area.
 - b. The approved horizontal site development is limited to Trenches #1, #2, #3, and #4 in the North waste area; and to Trenches #5 and #6 in the South waste area.
 - Revised Figures 20 and 28 and updated Plan Sheet 4 of the RDP have been revised to show the omission of previously designated Trench #7.
 - c. The Department acknowledges the deviation from IAC 567 IAC 114.26(1)"m"(6) relative to the separation distance from the adjacent property line, as documented by a waiver granted by the adjacent property owner on March 5, 1996.
 - d. The Construction Certification dated May 13, 1996, as submitted by FOX Engineering Associates, Inc. and approved on May 14, 1996, is incorporated as part of the permit documents.

- e. The detailed soils inventory for the liner system, and weekly, intermediate, and final cover usage as submitted by FOX Engineering Associates, Inc. under cover letter dated June 6, 1996 and approved on September 13, 1996, is incorporated as part of the permit documents.
- f. In accordance with the variance approval of February 19, 1999, the permit holder was authorized to increase in the liner side slope from a maximum of 4:1 to a 3:1 side slope on the north perimeter slope of the Trench 5 expansion area as shown on Plan Sheet 4 of the RDP updated January 4, 1999, and prepared by FOX Engineering Associates, Inc.
- g. The Construction Certification for Trench #5, dated June 11, 1999, as submitted by FOX Engineering Associates, Inc. and approved on July 12, 1999, is incorporated as part of the permit documents.
- h. The Construction Certification for Trench #6, dated May 10, 2000, as submitted by FOX Engineering Associates, Inc. and approved on May 26, 2000, is incorporated as part of the permit documents.
- 3. Solid waste shall be deposited at the toe of the working face, spread in two foot layers, and compacted on a 3:1 slope.
- 4. Litter fences shall be used when needed to confine windblown materials to the operating area.
- 5. Surface water shall be diverted around the fill area and surface drainage shall be provided at the toe of the working face.
- 6. An all weather fill area accessible during all weather conditions under which solid waste is received and disposed at the site shall be provided at all times.
- 7. Hydrologic monitoring at the site shall be conducted in accordance with the Hydrologic Monitoring System Plan (HMSP) dated March 29, 1996, as submitted by FOX Engineering Associates, Inc. and approved on May 14, 1996; and the following provisions:
 - a. The HMSP for the North and South waste areas shall include the following:

Water table monitoring points, consisting of upgradient groundwater monitoring point MW-37; and downgradient groundwater monitoring points MW-6, MW-23, MW-24, MW-25, MW-28, MW-31, MW-34*, MW-35*, MW-39, MW-40, and MW-43.

Uppermost Aquifer monitoring points, consisting of upgradient groundwater monitoring point MW-36; and downgradient groundwater monitoring points MW-7, MW-8, MW-29, MW-30, MW-32, MW-33, MW-34*, MW-35*, MW-38, MW-41, and MW-42.

Surface Water monitoring points, consisting of upgradient surface water monitoring points SW-1 and SW-4; and downgradient surface water monitoring points SW-2, SW-3, SW-5, SW-6.

* Screened across both the water table and the uppermost aquifer.

- b. Monitoring points not designated for water quality monitoring shall be retained as water level measuring points.
- c. Department construction documentation form 542-1277 and boring logs for all monitoring wells and piezometers shall be submitted within 30 days of installation. Department construction documentation form 542-1323 shall be submitted within 30 days of establishing surface water monitoring points. Abandonment of any monitoring well requires prior approval by the Department. Well abandonment document DNR FORM 542-1226 shall be submitted within 30 days of plugging a well.
- d. First year quarterly samples shall be collected from any designated new monitoring well, dewatering system, and any monitoring point which lacks four quarterly samplings and analyzed for the parameters listed in 567 IAC 114.26(4)"d", "e" and "f". Baseline testing for the parameters listed in 567 IAC 114.26(4)"f" shall be conducted during the fall. All statistical evaluations shall include the updated baseline and subsequent sampling documentation.
- e. Continued semiannual sampling shall take place in March and September of each year and be analyzed for the parameters listed in 567 IAC 114.26(4)"e". Routine annual testing for the parameters listed in 567 IAC 114.26(4)"f" shall be conducted during September of each year.
- f. The Method Detection Limit (MDL) for the test parameters shall not exceed action levels as defined in 567 IAC Chapter 133. If the action levels cannot be feasibly achieved using procedures described in 567 IAC 114.26(5), then the MDL shall not exceed the lowest feasible level.
- g. Samples collected for dissolved metals analysis shall be field filtered, preserved, and promptly transferred to a certified laboratory for analysis.
- h. If laboratory results exceed the upgradient mean plus two standard deviations or the Maximum Contaminant Level (MCL) for any parameter, the Department shall be notified within 30 days of receipt of the analytical results.
- i. Surface monitoring points must be clearly marked in the field and a method for measuring the flow rate at each sampling point shall be devised.
- j. Results of all analysis and the associated Department sampling forms 542-1322 and 542-1324 shall be submitted to the Department's Main and local Field offices within 45 days of the sample collection.
- k. An Annual Water Quality Report (AWQR) summarizing the effects the facility is having on groundwater and surface water quality shall be submitted to the Department's Main and local Field offices by November 30 each year. This report shall be prepared in accordance with 567 IAC 114.26(8)"d" by a Professional Engineer licensed in the State of Iowa. The AWQR shall include the results of the semiannual groundwater measurements and the routine groundwater analyses conducted at the monitoring points. The Special Waste Authorization information no longer needs to be addressed in the AWQR, but instead shall now be provided in the Solid Waste Fee Schedule and Retained Fee Report.
- 8. In accordance with the variance approval of November 10, 1998, the permit holder is authorized to reduce the frequency of groundwater level measurements from monthly, as required by 567 IAC

114.26(4)"b", to semiannually. The measurements shall be taken during the semiannual sampling events, with the results submitted in the corresponding semiannual monitoring reports and the Annual Water Quality Report.

- 9. The permit holder is authorized to construct and operate the leachate control system in accordance with the Leachate Control Plan (LCP) as provided in the RDP dated March 29, 1996, and prepared by FOX Engineering Associates, Inc. and approved on May 14, 1996; the revisions as noted in Special Provision #2 above; and the following conditions:
 - a. Leachate collected from the leachate control system shall be disposed of either by treatment in an on-site facility with an NPDES permit or by discharge to the City of Ames publicly owned treatment works (POTW). If the discharge is to a POTW with a pretreatment program approved by the Department, the discharge must comply with the terms and conditions of a local permit issued for the discharge by the POTW. If the discharge is to a POTW without an approved pretreatment program a completed treatment agreement form shall be submitted to the Department's Wastewater Section. Copies of the local permit or treatment agreement shall be provided to the Department's Energy and Waste Management Bureau and the local Field office. The treatment agreement must be on DNR Form 31 (542-3221) and must comply with the requirements of 567 IAC 64.3(5).
 - b. In accordance with 567 IAC 114.26(11)"d", the Department shall be notified and the site inspected when the initial construction of each phase of the leachate control system has been completed. Prior to the inspection, construction certification reports shall be submitted to the Department's Main and local Field offices. No waste disposal shall commence in a new phase until the site development has been inspected and approved by the Department.
 - c. The leachate control system shall be operated and maintained in accordance with the approved permit documents. After implementation of the leachate control system, the permit holder shall routinely collect the necessary information and evaluate the effectiveness of the system in controlling the leachate. All documentation shall be summarized in a Leachate Control System Performance Evaluation (LCSPE) Report. Effective control shall be considered as maintaining compliance with maximum leachate head as defined in 567 IAC 114.26(11)"a"(1), achieving the lowest possible leachate head as required in 567 IAC 114.26(12)"b"(2), and maintaining surface and groundwater quality standards at compliance monitoring points.
 - d. Leachate head levels and elevations shall be measured monthly at all piezometers and the volume of leachate collected and transported to the treatment works recorded. Records of leachate contaminants testing required by the treatment works and any NPDES permit for on-site treated leachate discharges shall be maintained.
 - e. The permit holder shall annually submit the LCSPE Report, including record data, as a supplement to the facility Annual Water Quality Report, as defined in 567 IAC 114.26(8)"d". The performance evaluation shall include proposed additional leachate control measures and an implementation schedule in the event that the constructed system is not performing effectively.
 - f. In accordance with the variance approval of April 12, 1991, on-site leachate storage is waived at this time. An on-site leachate storage system shall be required upon the event that any complications arise or if the city of Ames can no longer accommodate direct discharge from the landfill.

- 10. The permit holder shall quarterly monitor and annually report site methane concentrations in accordance with 567 IAC 114.26(15)"b" after May 18, 1994. Specific actions, as defined in the rules, shall be taken in the event of methane gas level limit exceedances.
 - The annual report summarizing the methane gas monitoring results and any action taken resulting from gas levels exceeding the specified limits during the previous 12 months shall be submitted to the Department's Main and local Field offices by November 30 of each year.
- 11. The permit holder shall provide on-site scale facilities for the purposes of weighing and reporting solid wastes disposed of at the landfill. If conditions are such that make it impractical to provide an on-site scale, then off-site scale facilities or an alternative method to weighing may be used if justified and approved by the Department. The permit holder shall comply with the waste weighing, record keeping and tonnage fee reporting requirements defined in 567 IAC 101.9(455B,455D). The scale weighing facilities shall comply with the certification and licensing requirements of the Iowa Department of Agriculture and Land Stewardship. Certification shall be maintained current at all times. The permit holder shall submit a copy of the weighing scale facility licensing certificate issued by the Iowa Department of Agriculture and Land Stewardship and a copy of renewals shall be provided to the Department's Main and local Field offices.

The landfill does not currently have an on-site scale or an alternative method for determining waste tonnage approved. Therefore, the Department requires that the permit holder provide an on-site scale facility, or a request for approval of an alternative plan with included justification by no later than January 1, 2004.

- 12. The Emergency Response and Remedial Action Plan (ERRAP) submitted by FOX Engineering Associates, Inc. and dated December 2001, in compliance with 567 IAC 114.30(455B) was approved by the Department on January 17, 2002. An updated ERRAP shall be submitted at the time of each permit renewal application. An updated ERRAP shall be included with any request for permit modification to incorporate a facility expansion or significant changes in facility operation that require modification of the currently approved ERRAP.
- 13 The permit holder shall close the landfill site in accordance with the Closure/Post Closure Plan (C/PCP) dated March 15, 1996, as prepared by FOX Engineering Associates, Inc. and approved on May 14, 1996.
 - a. The clearance, dated May 13, 1996, from the Natural Resources Conservation Service relative to compliance with wind and soil loss limit regulations, in accordance with 567 IAC 114.26(1)"j" for all development areas, is incorporated as part of the permit documents.

APPENDIX B HIR/HMSP

AMES-STORY ENVIRONMENTAL LANDFILL HYDROGEOLOGIC INVESTIGATION REPORT & HYDROLOGIC MONITORING SYSTEM PLAN IDNR PERMIT NO. 85-SDP-13-91P

by:
FOX Engineering, Inc.
1531 Airport Road
Ames, Iowa 50010
(515) 233-0000
(800) 433-3469

AMES-STORY ENVIRONMENTAL LANDFILL HYDROGEOLOGIC INVESTIGATION REPORT & HYDROLOGIC MONITORING SYSTEM PLAN PERMIT NO. 85-SDP-13-91P

I hereby certify that this engineering document was prepared by me or under my direct personal supervision and that I am a duly registered Professional Engineer under the laws of the State of Iowa.

Douglas I Luzhetak P.E.

Date

Iowa Registration No. 12654

My registration renews December 31, 1996

Prepared by FOX Engineering Associates, Inc. Ames, Iowa

Copyright 1996 All Rights Reserved FOX P.N. 256295A.310

HYDROGEOLOGIC INVESTIGATION REPORT

		HI	
I.	INTRODUCTION		
II.	FIELD ACTIVITIES		
	Soils	• •	1
	Groundwater	• •	2
III.	SITE GEOLOGY		7
IV.	HYDROGEOLOGIC UNITS & FLOW PATHS		7
V.	INDUCED GROUNDWATER LEVEL VARIATIONS		8

HYDROLOGIC MONITORING SYSTEM PLAN

I.	INTRODUCTION
II.	COMPONENTS OF THE HMSP
III.	HYDROLOGIC MONITORING SYSTEM OPERATING REQUIREMENTS
IV.	LABORATORY PROCEDURES9
V.	ANALYSIS OF SAMPLING DATA
VI.	ADDITIONAL SAMPLING
VII.	RECORD KEEPING
VIII.	GROUNDWATER QUALITY ASSESSMENT PLAN
IX.	MONITORING WELL MAINTENANCE PERFORMANCE REEVALUATION 12
X.	POST-CLOSURE MONITORING REQUIREMENTS
vī	CONTCI TICIONIC

Sheets

Sheet 1 Sheet 2 Sheet 3 Sheet 4 Sheet 5 Sheet 6 Sheet 7 Sheet 8	 Site Layout Top of Upper Aquifer Sand Layer Thickness of Upper Aquifer Sand Layer Top of Pre-Illinoian Till Geologic Cross Sections Water Table Contour Map Potentiometric Water Surface - Upper Aquifer Vertical Groundwater Flow Assessment Profiles
	Tables
Table 1 Table 2 Table 3 Table 4	 Falling Head Permeability Testing - Shelby Tube Samples Falling Head Permeability Testing - Recompacted Samples Water Elevation Data - September, 1995 Hydraulic Conductivity Testing Results
	Appendices
Appendix A Appendix B Appendix C Appendix D Appendix E Appendix F Appendix G Appendix H Appendix I Appendix J Appendix K Appendix L	 Boring Logs & Grain Size Analysis Monitoring Well Construction Documentation Forms IDNR Letter - December 4, 1995 Proctor Tests Results Hydraulic Conductivity Testing Results & Calculations LF101 - Monitoring Point Survey Information LF105 - Water Elevation Measurement Form Field Procedures Manual IDNR Form 542-1322 (Groundwater Sampling Record) IDNR Form 542-1323 (Documentation of Surface Water Monitoring Point) IDNR Form 542-1324 (Surface Water Sampling Record) Schedule of Sampling, Operation & Maintenance

I. INTRODUCTION

Ames-Story Environmental Landfill (Permit # 85-SDP-13-91P) has recently purchased additional land situated east and south of the currently permitted facility (Sheet 1). The newly acquired land is intended for use as future lateral expansion areas. These areas are referenced as the east expansion area and the south expansion area. This study has been completed to document the subsurface conditions in the expansion areas.

Considerable hydrogeologic information was acquired and presented in 1991 during the original permitting process and is incorporated herein.

II. FIELD ACTIVITIES

Soils

Soil Boring & Sampling - Hydrologic assessment of the original site consisted of 22 soil borings, 18 of which were completed as monitoring wells and/or piezometers. Six (6) of the monitoring wells/piezometers were later plugged and abandoned. The monitoring wells that remain are designated MW-22 through MW-34 and are incorporated as part of the current Hydrologic Monitoring System. Note that MW-28 and MW-29 were installed by the City of Ames as monitoring wells for the City of Ames Landfill (Permit #85-SDP-8-88P). Boring logs for these monitoring wells are included in Appendix A, while Monitoring Well Construction Documentation Forms are included in Appendix B.

In February, 1995, nine (9) additional soil borings were advanced in the south expansion area (Sheet 1). Six (6) of the nine (9) borings were completed as monitoring wells. These wells are designated MW-38 through MW-43. The remaining soil borings are designated SB-44, SB-45, and SB-46. Monitoring wells MW-6, MW-7, and MW-8 were installed by the City of Ames as monitoring wells for the City of Ames Landfill (Permit #85-SDP-8-88P). Boring logs for these monitoring wells are included in Appendix A, while Monitoring Well Construction Documentation Forms are included in Appendix B.

Additionally, three (3) monitoring wells along the east side of the currently permitted area were plugged and replaced. Excavation in the east expansion area eliminated MW-22, MW-26, and MW-27. These wells were plugged by a certified well driller and were replaced by MW-35, MW-36, and MW-37 as approved by the Iowa Department of Natural Resources Letter dated December 4, 1995 (Appendix C). Boring logs for these monitoring wells are included in Appendix A, while Monitoring Well Construction Documentation Forms are included in Appendix B.

Ames-Story Environmental Landfill 1996 Hydrogeologic Investigation Report Permit No. 85-SDP-13-91P

All soil borings were continuously sampled. Thin walled Shelby tube samples were also collected at each of the soil boring locations that extended below the planned landfill base. The tube samples were sealed and transported to a qualified laboratory for testing.

Laboratory Testing - Testing was conducted on select soil samples representing various subsurface strata at the site. Falling head permeability tests were performed on the undisturbed Shelby tube samples. The results are presented in Table 1.

Grain size analyses were also performed on select soil samples. The Grain Size Distribution Test Reports are included in Appendix A with each corresponding boring log. Standard Proctor density and soil moisture were determined utilizing several bag samples collected at the site. The Proctor test results are included in Appendix D.

Permeability testing has also been completed on recompacted soil samples. The samples were recompacted to 85%, 90%, and 95% of the Standard Proctor density and falling head permeability testing was performed. The results (Table 2) indicate that the on-site soil exhibits a permeability of less than 1×10^{-7} cm/sec when recompacted to 95% of standard proctor.

Groundwater

Monitoring Wells - All wells on site consist of 2" PVC screen and riser pipe and conform to IAC 110.11. The wells are situated in clusters, with each well cluster containing a water table monitoring well and an upper aquifer monitoring well. The well clusters are situated at intervals of less than 600' around the perimeter of the landfill site

Water Level Monitoring - The top of casing elevation is recorded for each of the site monitoring wells. Water level readings are routinely collected and are recorded. Water elevation data for September, 1995 is summarized in Table 3. Water elevation data is discussed further in sections of this report that follow.

In-Situ Hydraulic Conductivity Testing - Slug and/or bail tests were performed at each monitoring well to estimate the hydraulic conductivity in the screened interval. The results of hydraulic conductivity testing are summarized in Table 4. The field data and the calculation of hydraulic conductivity at each well are included in Appendix E.

The results of slug and/or bail tests indicate hydraulic conductivities in the range of 10⁻⁴ to 10⁻⁷ cm/sec.

TABLE 1

UNDISTURBED FALLING HEAD PERMEABILITY TEST RESULTS

AMES-STORY ENVIRONMENTAL LANDFILL

SAMPLE DESIGNATION	DEPTH (ft)	MOISTURE CONTENT (%)	DRY DENSITY (pcf)	PERMEABILITY (cm/sec)
PZ-2	24.5-26.5	12.0	117.2	2.3E-03
PZ-4	46-48	16.3	108.4	5.8E-08
PZ-4	66-67	17.3	116.6	4.4E-08
PZ-6	19.5-21.5	12.6	118.8	7.0E-07
PZ-8	29.5-31.5	13.7	118.4	5.6E-08
MW-25	29.5-31.5	15.1	120.2	2.4E-07
SB-31	9.5-11.5	13.3	117.1	4.0E-04*
SB-32	14-16	13.1	105.5	3.7E-06**
SB-34	30-32	15.9	112.5	3.0E-07
SB-35	14-16	14.6	121.7	9.3E-08
MW-38-12	50	15.1	122.0	3.3 X 10-8
MW-41-3	25	12.1	123.0	*
MW-41-8	40	12.0	124.0	6.2 X 10-8
MW-42-11	45	13.6	118.0	*
MW-43-1	25			*
B-44-8	. 35	14.6	118.0	1.1 X 10-7
B-45-7	30			*
B-46-7	25	11.8	130.0	1.5 X 10-8
B-46-10	35	13.0	122.0	1.0 X 10-6

^{*} Samples were either loose or disturbed by large gravel.

^{**} VERY SANDY

TABLE 2

RECOMPACTED FALLING HEAD PERMEABILITY TEST RESULTS

AMES-STORY ENVIRONMENTAL LANDFILL

SAMPLE DESIGNATION	COMPACTION (%)	MOISTURE CONTENT (%)	DRY DENSITY (pcf)	PERMEABILITY (cm/sec)		
PZ-2	85.5	10.8	104.1	7.9E-06		
PZ-2	90.6	10.8	110.3	4.6E-06		
PZ-2	95.6	10.8	116.4	6.4E-08		
PZ-4	87.6	12.4	109.0	1.7E-07		
PZ-4	90.5	12.4	112.6	1.0E-07		
PZ-4	95.6	12.4	118.9	8.5E-08		
PZ-6	84.6	12.9	104.3	7.5E-09		
PZ-6	89.9	12.9	110.8	1.2E-06		
PZ-6	94.8	12.9	116.9	5.7E-08		
PZ-8	86.8	11.9	105.9	3.0E-06		
PZ-8	92.0	11.9	112.2	2.8E-06		
PZ-8	96.9	11.9	118.2	8.9E-08		
SB-32	85.9	13,2	104.3	3.7E-08		
SB-32	90.9	13.2	110.3	3.4E-08		
SB-32	95.7	13.2	116.2	1.4E-08		
SB-33	86.6	13.8	102.9	7.0E-07		
SB-33	90.7	13.8	107.8	9.0E-06		
SB-33	95.4	13.8	113.3	2.8E-07		
SB-34	85.8	12.7	107.1	5.7E-08		
SB-34	95.7	12.7	119.4	3.7E-08		
SB-35	84.6	14.4	104.7	1.6E-08		
SB-35	89.5	14.4	110.8	8.1E-08		
SB-35	94.5	14.4	117.0	1.5E-08		

TABLE 3 WATER ELEVATION DATA SEPTEMBER, 1995

MONITORING WELL #	TOP OF PVC ELEVATION	DEPTH TO WATER	WATER ELEVATION			
4(28)	946.33	9.10	. 937.23			
5(29)	946.62	13.7	932.92			
6	943.31	10.2	933.11			
7	943.50	22.2	921.3			
8	943.09	33.5	909.59			
22	950.59	13.87	936.72			
23	945.98	16.62	929.36			
24	939.44	20.9	918.54			
25	906.34	9,.67	896.67			
26	950.51	20.84	929.67			
27	950.51	35.0	915.51			
30	945.54	36.15	909.39			
31	941.43	21.9	919.53			
32	939.86	32.92	906.94			
33	906.32	9.54	896.78			
34	909.50	7.86	901.64			
38	936,59	36.22	900.37			
39	935.93	18.52	917.41			
40	933.07	7.56	925.51			
41	933.46	13.08	920.38			
42	940.64	15.26	925.38			
43	940.83	12.30	928.53			
44	936.94	3.0	933.94			
45	937.07	5.4	931.67			
46	938.21	7.0	931.21			

TABLE 4

HYDRAULIC CONDUCTIVITY VALUES (cm/sec)
BASED ON SLUG & BAIL TEST RESULTS

	FORMATI	FORMATION TYPE vs. SCREENED INTERVAL											
WELL NO.	AQUIFER FM.	. AQI	JITARD FM										
	UPPER AQUIFER	WISCONSINA N TILL	PRE-ILLINION TILL										
MW-21		5.0E-06											
PZ-1		10-10-10-10	3.0E-06										
PZ-2			2.0E-07										
MW-22		7.0E-06											
PZ-3	1.0E-04												
PZ-4			1.0E-06										
MW-23		3.0E-06											
PZ-5	1.0E-04												
PZ-6		u-11-	7.0E-05										
MW-24	H-44-												
PZ-8			5.0E-06										
MW-25	INSTANT *												
PZ-9	5.0E-04												
MW-38	3.4E-06												
MW-39		6.54E-04											
MW-40		5.68E-05											
MW-41	1.79E-05												
MW-42	4.09E-05												
MW-43		3.96E-05											

^{*} SLUG & BAIL TEST WAS NOT PERFORMED DUE TO RAPID RECHARGE. HYDRAULIC CONDUCTIVITY VALUE EXCEEDS 1E-04.

III. SITE GEOLOGY

Soil boring data collected at the site indicates several stratigraphic units of interest. The uppermost unit, the Wisconsinan till is oxidized to approximate depths of 10' to 13' below grade. Below depths of 10' to 13' the Wisconsinan till is unoxidized. The Wisconsinan till is described as 65' to 70' of silty sandy clay. Thin sand lenses are noted throughout this unit. A significant sand layer occurs throughout the site at an approximate elevation of 890' to 900' above MSL. Sheet 2 illustrates the top of this sand layer. Sheet 3 is an isopach map illustrating the thickness of this sand layer across the site. This sand layer is typically described as a fine sand with silt.

Underlying the Wisconsinan till, Pre-Illinoian tills ranging from 20' to 25' in thickness are encountered. This unit is described as a gray/brown-gray firm silt and is locally referred to as a buried loess deposit. Sheet 4 illustrates the top of the Pre-Illinoian till. Mississippian limestone is situated below the till units. Geologic cross sections (Sheets 5a-5c) illustrate the subsurface stratigraphy at the site.

IV. HYDROGEOLOGIC UNITS & FLOW PATHS

Hydrologic Units

Monitoring wells within the Wisconsinan till indicate a static water table approximately 10' below grade. The water table surface generally mimics the ground surface (Sheet 6). The unconsolidated Wisconsinan till is considered a distinct hydrologic unit and water movement is represented by the water table surface.

The significant sand layer near the base of the Wisconsinan till is interpreted to be the upper aquifer unit at this site. This layer is continuous across the site and exhibits a potentiometric surface (Sheet 7) that is separate from the water table surface. Water movement in this unit is anticipated to be horizontal and warrants monitoring as a separate aquifer unit.

Flow Paths

Surface Water - Surface water flow in the north portion of the site flows north to the creek, which in turn flows west to the South Skunk River. Surface water flow in the central portion of the site flows to a drainage ditch along Watt Road. This ditch flows to a 36" storm sewer that drains to the South Skunk River. In the southern portion of the site surface water flows west and south to drainage ditches along the railroad ROW. The drainage ditches flow west to the South Skunk River.

Ames-Story Environmental Landfill 1996 Hydrogeologic Investigation Report Permit No. 85-SDP-13-91P

Groundwater - Based on the water level data collected in September, 1995 (Table 3), groundwater in the unconfined Wisconsinan till flows northeast in the northern portion of the site and east-southeast in the southern portion of the site (Sheet 6). Groundwater within the upper aquifer sand layer flows northeast in the northern portion of the site and east-southeast in the southern portion of the site (Sheet 7).

Downward movement of groundwater is controlled by the low permeability glacial clays. The Vertical Groundwater Assessment Profiles (Sheets 8a-8b) illustrate the flow characteristics based on available data. The greatest resistance to flow appears to be in the vertical direction, while the least resistance to flow appears to be horizontally. The sand seams and the upper aquifer sand layer appear to accelerate horizontal flow.

V. INDUCED GROUNDWATER LEVEL VARIATIONS

Construction of the proposed landfill expansions will affect the seasonal watertable level in the area. Groundwater diversion systems are currently in place in the originally permitted portion of the site. In addition, groundwater diversion will be installed below the baseliner in the east and south expansion areas. It is anticipated that the water table will be lowered in the vicinity of the expansion areas. The radius of influence due to drawdown by the groundwater diversion systems is not anticipated to extend appreciably beyond the property boundaries due to the presence of low permeability soils. The low permeability soils will also act to buffer the effects of heavy precipitation and/or drought. Likewise, sudden changes in the water level of the creek should have a limited effect on the water levels existing along the site perimeter.

I. INTRODUCTION

This Hydrologic Monitoring System Plan (HMSP) for the Ames-Story Environmental Landfill is the operational and maintenance plan for the hydrologic monitoring system. The purpose of the HMSP is to determine the impact, if any, the sanitary landfill is having on the adjacent ground and surface waters through groundwater monitoring wells and surface water monitoring points. The monitoring system should enable early detection of the escape of pollutants from a landfill. This HMSP is pertinent to the active and proposed landfill portions of the site.

The HMSP has been prepared in accordance with Iowa Administrative Code (IAC) Rule 567, Subrule 103.2(3): Hydrologic monitoring systems, 103.2(4): Hydrologic monitoring system operating requirements, 103.2(5): Laboratory Procedures, 103.2(6): Analysis of sampling data, 103.2(7): Additional sampling, 103.2(8): Record keeping and recording, 103.2(9): Groundwater quality assessment plan, 103.2(10): Postclosure monitoring requirements. Portions of Subrule 110: Design, Construction and Operation Standards for Solid Waste Management Facilities also apply.

II. COMPONENTS OF THE HYDROLOGIC MONITORING SYSTEM

All surface water and ground water monitoring points are listed on form LF-101 and LF-105 in Appendix F and G, respectively. LF-101 includes the landfill coordinate location, ground surface elevation, top of protective casing and the top of well casing information.

Surface Water Monitoring Points

Surface drainage in the northern portion of the site is north and northwest toward the creek. The creek flows west to the South Skunk River. Surface water monitoring point SW-1 is located in the creek immediately upstream of the site. Surface water monitoring point SW-2 is located in the creek immediately downstream of the site. SW-3 is located at the end of the groundwater diversion tile that drains into the creek along the north end of the site.

In the southern portion of the site, surface water flows south to the drainage ditch that runs along the railroad ROW. Surface water monitoring point SW-4 is located at the upgradient point in this drainage ditch, while SW-5 is located at the downgradient point. SW-6 is located at the end of the groundwater diversion tile that will be installed during development of the south expansion. This tile surfaces west of the site in a diversion ditch along the south side of the adjoining Ames Sanitary Landfill. Refer to Sheet 1 for an illustration of the surface water monitoring points.

Monitoring Wells

Existing and proposed monitoring wells are illustrated on Sheet 1. Copies of the boring logs and the Monitoring Well Construction Documentation Forms are included in Appendix A and B, respectively.

Well Cluster MW-21/PZ-1/PZ-2 - This well cluster is located in a downgradient position with respect to the water table and the potentiometric surface of the Upper Aquifer Sand Layer.

MW-21 was originally installed to monitor the water table. However, excavation in Trench No. 1 resulted in a drop in the water table. MW-21 was dry and was plugged and abandoned.

PZ-1 was screened at the interface of the gray unweathered Wisconsinan till and the basal Pre-Illinoian Till. PZ-1 was plugged and abandoned. PZ-2 was screened in the Pre-Illinoian Till and was plugged and abandoned.

Well MW-26 - MW-26 was installed as the replacement well for MW-21 and is a downgradient water table monitoring well. MW-26 was plugged (2/23/96) as the east expansion progresses. This well was replaced by MW-35 (as described in the December 4, 1995 IDNR Letter - Appendix C).

Well Cluster MW-22/MW-27(PZ-3)/PZ-4 - This well cluster was plugged (2/23/96) and was located in an upgradient position with respect to the water table and the potentiometric surface of the Upper Aquifer Sand Layer.

MW-22 was designated as the upgradient water table monitoring point for the site. This well was replaced by MW-37 as the east expansion progressed. MW-27(PZ-3) was screened in the Upper Sand Layer Aquifer and was designated as the upgradient Sand Layer Aquifer well for the site. MW-27 was replaced by MW-36 as the east expansion progressed. PZ-4 was screened in the Pre-Illinoian Till and was plugged and abandoned.

Well Cluster MW-28(City 12a)/MW-29(City 12b) - This well cluster was originally installed by the City of Ames for use as an upgradient well cluster for the existing Ames Landfill located immediately west of the site. This cluster is positioned cross gradient of the upgradient well cluster (MW-22/MW-27(future MW-36/MW-37)).

MW-28 is screened within the brown weathered Wisconsinan till and is the water table monitoring well. MW-29 is screened across several sand seams at depth, including the Upper Sand Layer Aquifer. MW-28 and MW-29 will be maintained as downgradient monitoring points.

Ames-Story Environmental Landfill 1996 Hydrologic Monitoring System Plan Permit No. 85-SDP-13-91P

Well Cluster MW-6(City 11a)/MW-7(City 11b)/MW-8(City 11c) - This well cluster was originally installed by the City of Ames for use as an upgradient well cluster for the existing Ames Landfill located immediately west of the site. This cluster is positioned downgradient of the upgradient well cluster (MW-22/MW-27(future MW-36/MW-37)).

MW-6 is screened within the brown weathered Wisconsinan till and is the water table monitoring well. MW-7 is screened across several sand seams at depth, including the Upper Sand Layer Aquifer. MW-8 is screened in the Pre-Illinoian Till. MW-6, MW-7, and MW-8 will be maintained as downgradient monitoring points.

Well Cluster MW-40/MW-41 - This well cluster is located south of the south expansion area. This cluster is positioned downgradient of the upgradient well cluster (MW-22/MW-27(future MW-36/MW-37)).

MW-40 is screened within the brown weathered Wisconsinan till and is the water table monitoring well. MW-41 is screened across the Upper Sand Layer Aquifer. MW-40 and MW-41 will be maintained as downgradient monitoring points.

Well Cluster MW-38/MW-39 - This well cluster is located southwest of the south expansion area. This cluster is positioned downgradient of the upgradient well cluster (MW-22/MW-27(future MW-36/MW-37)).

MW-39 is screened within the brown weathered Wisconsinan till and is the water table monitoring well. MW-38 is screened across the Upper Sand Layer Aquifer. MW-38 and MW-39 will be maintained as downgradient monitoring points.

Well Cluster MW-42/MW-43 - This well cluster is located west of the south expansion area. This cluster is positioned downgradient of the upgradient well cluster (MW-22/MW-27(future MW-36/MW-37)).

MW-43 is screened within the brown weathered Wisconsinan till and is the water table monitoring well. MW-42 is screened across the Upper Sand Layer Aquifer. MW-42 and MW-43 will be maintained as downgradient monitoring points.

Well Cluster MW-23/MW-30(PZ-5)/PZ-6 - This well cluster is located along the southwest side of the original site. This cluster is positioned downgradient of the upgradient well cluster (MW-22/MW-27(future MW-36/MW-37)).

MW-23 is screened within the brown weathered Wisconsinan till and is the water table monitoring well. MW-30(PZ-5) is screened across the Upper Sand Layer Aquifer. PZ-6 was screened in the Pre-Illinoian Till and was plugged and abandoned. MW-23 and MW-30 will be maintained as downgradient monitoring points.

Well Cluster MW-24/MW-32(PZ-7)/PZ-8 - This well cluster is located along the southeast side of the original site. This cluster is positioned downgradient of the upgradient well cluster (MW-22/MW-27(future MW-36/MW-37)).

MW-24 is screened within the brown weathered Wisconsinan till and is the water table monitoring well and is frequently dry. MW-32(PZ-7) is screened across the Upper Sand Layer Aquifer. PZ-8 was screened in the Pre-Illinoian Till and was plugged and abandoned. MW-24 and MW-32 will be maintained as downgradient monitoring points.

MW-31 - This well was installed to supplement MW-24 as a downgradient water table monitoring point along the west property line, since MW-24 is frequently dry.

Well Cluster MW-25/MW-33(PZ-9) - This well cluster is located in the northwest corner of the original site, near the creek. This cluster is positioned downgradient of the upgradient well cluster (MW-22/MW-27(future MW-36/MW-37)).

MW-25 is screened across the top of the thick (21.5') alluvial sand layer (water table). MW-33(PZ-9) is screened across the lower portion of this thick alluvial sand and is considered the Upper Sand Layer Aquifer monitoring point. MW-25 and MW-33 will be maintained as downgradient monitoring points.

MW-34 - This well is located in the north-central portion of the original site, near the creek. This well is positioned downgradient of the upgradient well cluster (MW-22/MW-27(future MW-36/MW-37)).

The screened interval of MW-34 is screened across both the Upper Aquifer Sand Layer and the water table surface. This well will be maintained as a downgradient monitoring point for both the water table and the Upper Aquifer Sand Layer.

MW-35 - This well was installed in the northeast corner of the east expansion area, near the creek. This well is positioned downgradient of the upgradient well cluster (MW-36/MW-37(former MW-22/MW-27)). The screened interval of MW-35 is screened across both the Upper Aquifer Sand Layer and the water table surface. This well will be installed as a downgradient monitoring point for both the water table and the Upper Aquifer Sand Layer.

Well Cluster MW-36/MW-37 - This well cluster is located in an upgradient position with respect to the water table and the potentiometric surface of the Upper Aquifer Sand Layer.

MW-37 is designated as the upgradient water table monitoring point for the site. This well replaces MW-22. MW-36 is screened in the Upper Sand Layer Aquifer and is designated as the upgradient Sand Layer Aquifer well for the site. MW-36 replaces MW-27.

III. HYDROLOGIC MONITORING SYSTEM OPERATING REQUIREMENTS

A. Operational Sampling Requirements:

All sampling will be in accordance with subrule 110.8: Sampling protocol. A Field Procedures Manual for Landfills and Environmental Assessments (FPM) was developed to supplement this HMSP to meet the requirements of 110.8. The FPM is in Appendix H of this report. All procedures in the FPM are generic and apply to all landfills. This HMSP is tailored to the Ames-Story Environmental Landfill and supplements the FPM. The FPM is intended as a manual to be used in the field. References for the tests, guidelines and procedures are included with the FPM. The HMSP and FPM detail the following items as required by subrule 110.8 (the HMSP or FPM designation in the parenthesis shows where information on the item may be found):

- 1. Order in which monitoring points are sampled. (HMSP)
- 2. The tests and procedures required at each monitoring point and the order in which the procedures will be carried out. (HMSP)
- 3. Equipment and containers to be used. (HMSP and FPM)
- 4. Precautions to avoid introducing contaminants from outside sources in the monitoring wells or samples. (FPM)
- 5. How equipment shall be cleaned between uses. (FPM)
- 6. Procedures for evacuating each monitoring well prior to each water quality sampling. (FPM)
- 7. Procedures for handling field and equipment blanks and other quality assurance samples at the facility and in transit to the laboratory. (FPM)
- 8. Procedures for field filtration of samples, if required. (FPM)
- 9. Procedures for sample preservation. (FPM and HMSP)
- 10. Procedures for sample collection, labeling and handling at the facility and during transport to the laboratory. (FPM and HMSP)
- 11. Procedures for records maintenance and data analysis. (HMSP)

12. Procedures for sampling surface water monitoring points including exact sampling locations and depths. (HMSP)

R. Groundwater Levels:

The elevation of the water in each monitoring well will be measured monthly and recorded to the nearest 0.01 foot. Level measurements must be made before a well is evacuated for sample collection. Updated Water Contour Maps (Sheets 6 & 7) are included herein as required for approval of the HMSP.

Groundwater levels will be measured by the procedures as detailed in the FPM. The monitoring points will be sampled in the order specified on the attached form LF-105: Monitoring Well/Piezometer Groundwater Elevation Measurement Form (Appendix G). The sampling (or testing) order begins from the least likely to be contaminated monitoring point to the most likely to be contaminated point.

Where groundwater elevations are the only information gathered and the well is not being sampled, use form LF-105 to record the water table elevation information. Form LF-105 shows the order in which the elevations should be taken, type of well and top of well casing elevation.

Where groundwater elevations are being taken in conjunction with sampling, record the groundwater elevation on IDNR form 542-1322 (Appendix I). IDNR form 542-1322 is for groundwater sampling and/or groundwater elevation measurement. The monitoring wells should be purged, sampled and tested in the order specified on form LF-105. All monitoring wells and piezometers will be sampled before the surface monitoring points are sampled.

C. Surface Water Levels.

The flow rate of each surface water body sampled will be measured and recorded at the time of sample collection. Details for the sampling procedures are contained in the FPM. IDNR form 542-1323: Form for Documentation of Surface Monitoring Point has been prepared for each surface monitoring point and is included in Appendix J. IDNR form 542-1324: Form for Surface Water Sampling (Appendix K) will be completed during sampling for each surface monitoring point. The sampling order is shown on form LF-105. All surface monitoring points are sampled after the monitoring wells and piezometers. Surface monitoring points are sampled from the least likely to be contaminated point to the most likely to be contaminated point.

D. First-year Water Sampling:

After the approval of this HMSP and during the first year of operation of the hydrologic monitoring system, samples will be collected quarterly from each groundwater monitoring well and surface monitoring point. The monitoring schedule will be determined upon approval of this report. A tentative Schedule of Sampling, Operations and Maintenance (Appendix L) details the proposed sampling schedule. The purpose of the first year sampling is to determine baseline water quality information and enable initial estimations of water quality variability. Samples will be analyzed quarterly for the first year only for the following parameters as required by subrule 103.2(4)"d":

- 1. Arsenic, dissolved.
- 2. Barium, dissolved.
- 3. Cadmium, dissolved.
- 4. Chromium, total dissolved.
- 5. Lead, dissolved.
- 6. Mercury, dissolved.
- 7. Magnesium, dissolved.
- 8. Zinc, dissolved.
- 9. Copper, dissolved.
- 10. Benzene.
- 11. Carbon tetrachloride.
- 12. 1,2-Dichloroethylene.
- 13. Trichloroethylene.
- 14. 1,1,1-Trichloroethane.
- 15. 1.1-Dichloroethylene.
- 16. Paradichlorobenzne.

Additional parameters may be required at the discretion of the Iowa Department of Natural Resources (IDNR).

Before sampling the monitoring points the person responsible for obtaining the water quality samples should contact the laboratory and request the proper sample containers, preservatives, shipping containers and documentation forms needed for the parameter(s) sampled.

Refer to the Field Procedures Manual in Appendix H for detail procedures for sampling and testing. In brief, for the first year sampling parameters the following will be required for sample collection at each monitoring point:

Items 1 through 9 (dissolved metals): A single sample should be field filtered through a 0.45 micron membrane filter into a 200+ mL plastic container. The sample should be preserved with nitric acid to a pH less than 2. One container will be enough for analysis of all of items 1 through 9.

Items 10 through 16 (volatile compounds): Triplicate samples are taken in 40 mL glass vials capped with a Teflon faced septums. One triplicate sample set is all that is required to test for parameters 10 through 16.

E. Routine Semiannual Water Sampling:

Quarterly the first year and semiannually after the first year, each monitoring point will be sampled as specified in the operation permit and analyzed for the following parameters as required by subrule 103.2(4)"e":

- 1. Chloride
- 2. Specific Conductance (field measurement).
- 3. pH (field measurement).
- 4. Ammonia nitrogen.
- 5. Iron, dissolved.
- 6. Chemical oxygen demand (COD).
- 7. Temperature (field measurement).

Additional parameters may be required at the discretion of the Iowa Department of Natural Resources (IDNR).

The semiannual water sampling will require the following sample collection procedures for each monitoring point (FPM):

Chloride: Collect one unfiltered, unpreserved sample in a 200 mL plastic bottle.

Specific Conductance, pH, Temperature: These parameters are field measurements. Consult the FPM for sampling and testing procedures.

Ammonia nitrogen, Chemical oxygen demand: Collect one unfiltered 200+ mL sample in a plastic bottle. The sample should be preserved with sulfuric acid to a pH less than 2 and cooled to 4 degrees centigrade for transport. A single sample can be used for both parameters.

Iron, dissolved: The same procedures required for metals in part D for items 1 through 9 apply for iron also. Iron can be tested in the same sample as items 1 through 9 if a sample for items 1 through 9 is required.

F. Routine Annual Water Sampling:

One sample per year from each monitoring point collected in a quarter specified in the operation permit will be analyzed for the following parameters as required by 103.2(4)"f":

- 1. Total organic halogen.
- 2. Phenols.
- 3. Additional parameters may be required at the discretion of the Iowa Department of Natural Resources (IDNR).

The annual water sampling will require the following sample collection procedures for each monitoring point:

<u>Total Organic Halogen:</u> Collect duplicate unfiltered samples in a 240 mL glass, amber bottles capped with a Teflon faced septums. The bottles should be transported at 4 degrees centigrade.

Phenols: Collect a single unfiltered sample in a 1000+ mL glass jar and preserve to a pH less than 2 with sulfuric acid. The jar should be transported a 4 degrees centigrade.

See the FPM or consult with the laboratory concerning the details of sample collection.

G. Leachate Sampling and Testing:

Leachate will be routinely sampled and tested as specified by the City of Ames as part of the Pretreatment Agreement that is currently in effect between the City of Ames and the Ames-Story Environmental Landfill. Refer to the Leachate Control Plan (LCP) for additional information concerning leachate quality and management.

IV. LABORATORY PROCEDURES

Groundwater and surface water samples will be analyzed by a laboratory that certifies to the IDNR that appropriate analytical procedures are utilized. All analyses of parameters not covered in the Safe Drinking Water Act (SDWA) must be performed according to methods specified in SW-846 or approved by the United States Environmental Protection Agency (EPA). Any analytical method used on non-SDWA parameters deviating from those specified in SW-846 or approved by EPA must be approved by the IDNR.

All analyses will be recorded on forms which, in addition to the analytical results, show the precision of the data set, bias and limit of detection. All method detection limits will be set at or below current action levels.

V. ANALYSIS OF SAMPLING DATA

For each parameter analyzed during the first year of operation of the hydrologic monitoring system, the mean and standard deviation will be calculated for each <u>upgradient</u> monitoring well using the first year of data. For routine semiannual monitoring parameters, the mean and standard deviation will be recalculated annually using all available analytical data.

If the analytical results for a <u>downgradient</u> monitoring point do not fall within the control limits of two standard deviations above the mean parameter(s) level in the corresponding upgradient monitoring point, the information will be submitted to the IDNR within 30 days of receipt of the analytical results. If the analytical results from an upgradient monitoring point do not fall within two standard deviations of the mean parameter(s) level for that monitoring point, the IDNR will also be notified within 30 days.

VI. ADDITIONAL SAMPLING

The IDNR will determine if additional sampling is warranted if the analysis of sampling data indicates a possible release has occurred. The IDNR may require any additional samples to be split and analyzed to determine if the values obtained outside the control limits were the result of laboratory or sampling error. Any additional analytical results will be submitted to the IDNR within 7 days of receipt. The IDNR will review the information and determine if monitoring or preparation of a groundwater quality assessment plan, in accordance with subrule 103.2(9), is necessary.

VII. RECORD KEEPING AND RECORDING

A. Field Records:

The person(s) conducting the sampling will record the procedures, measurements and observations at the time of sampling. Copies of the applicable forms follow this HMSP. A copy of all testing forms will be retained by the landfill manager at the completion of a day's testing. Copies of the field records will be submitted to the IDNR if so requested. Copies of the field sampling forms required by the testing laboratory will also be left at the landfill office at the end of each day's sampling.

B. Records of Analyses:

Records will be kept of analyses and the associated groundwater surface elevations for the active life and postclosure period of the facility. These records will be kept on file at the office of the manager and will be available for review by the IDNR upon request.

C. Quarterly Monitoring Analytical Results:

Copies of the quarterly monitoring analytical results will be submitted to the IDNR by the date specified in the landfill's operating permit. After the first year of quarterly testing, copies of the semiannual analytical results will be submitted to the IDNR by the date specified in the landfill's operating permit.

D. Annual Reports:

An annual report summarizing the effect the landfill is having on groundwater and surface water quality will be submitted to the IDNR by November 30 each year. The summary will be prepared by an engineer registered in the State of Iowa. The contents of the Annual Report will include the following items:

- 1. Amounts and kinds of wastes accepted under SWA's.
- 2. A narrative describing the effects the facility is having on surrounding surface water and groundwater quality and changes made or maintenance needed in the monitoring network.
- 3. Graphs showing concentrations versus time for all monitoring parameters for each well for as long as records exist for that parameter. Control limits will be shown on each graph. The control limits are defined as two standard deviations from the initial background value.
- 4. Results of activities and tests required by the well maintenance and performance reevaluation plans described in 567--110.9(455B) and Part X. of the HMSP.

VIII. GROUNDWATER QUALITY ASSESSMENT PLAN

A groundwater quality assessment plan will be required by the IDNR if leachate migration has occurred. Refer to 567--103.2(9) for the requirements for a groundwater quality assessment plan.

IX. WELL MAINTENANCE PERFORMANCE REEVALUATION PLAN

A monitoring well maintenance performance reevaluation plan (MWMPRP) is required by 567--110.9(455B). The purpose of the plan is the ensure that all monitoring points remain reliable. The MWMPRP includes the following items:

- 1. Every two years an examination of high and low water levels accompanied by a discussion of the acceptability of well location (both vertically and horizontally) and exposure of the screened interval to the atmosphere.
- 2. A biannual evaluation of water level conditions in the monitoring wells to ensure the effects of waste disposal or well operation have not resulted in change in the hydrologic settling and resultant flow paths. This information will be included in the biannual engineering report.
- 3. Annually conducting well depth measurements to ensure wells are physically intact and not filling with sediment.
- 4. Conduct in-situ permeability tests on monitoring wells every 5 years. Compare slug, bail or pump test data with the original test(s) to determine if well deterioration is occurring.

The MWMPRP is scheduled for March, 1998.

X. POSTCLOSURE MONITORING REQUIREMENTS

Postclosure monitoring is not required for the Ames-Story Environmental Landfill at this time. In the unlikely event the landfill is closed prior to its expected life expectancy, the following will be required:

- 1. At least six months prior to closing the landfill, a plan will be submitted to the IDNR for approval that details a 30 year postclosure monitoring program.
- 2. The IDNR will review the facility's postclosure monitoring records at five year intervals to determine if changes in the monitoring frequencies or parameters are required.
- 3. The commission may adopt rules on a site-specific basis identifying additional monitoring requirements for the landfill for which the postclosure monitoring period is to be extended.

Ames-Story Environmental Landfill 1996 Hydrologic Monitoring System Plan Permit No. 85-SDP-13-91P

XI. CONCLUSIONS

The Hydrologic Monitoring System Plan provides an effective operational and maintenance plan for the hydrologic monitoring systems. The Field Procedures Manual for Landfills and Environmental Assessments is the field guide for this plan and should be referenced.

APPENDIX C Analytical Data & Summary Tables

AMES-STORY ENVIRONMENTAL LANDFILL 85-SDP-13-91P MONITORING WELL SAMPLING RESULTS

NORTH TRENCHES

		SAMPLING	DATE:	March 17, 2	006												
	ACTION	U.G.W	U.G.W	U.A.W	U.A.W	D.G.W	D.G.W	D.G.W	D.G.W	D.A.W	D.A.W	BOTH	BOTH	BOTH		MONITORIN	G PTS.
PARAMETER	LEVEL	MW 22	MW 28	MW 27	MW 29	MW 23	MW 24	MW 26	MW 31	MW 30	MW 32	MW 25	MW 33	MW 34	SW 1	SW 2	SW3
ug/L	100 (S. W.)							30.00									
Benzene *	5	Plugged	NT	Plugged	NT	NT	DRY	Plugged	NT	NT	NT	NT	NT	_ NT	NT	NT	dry
Carbon tetrachloride *	5	Plugged	NT	Plugged	NT	NT	DRY	Plugged	NT	NT	NT	NT	NT	NT	NT	NT	dry
1,4-Dichlorobenzene *	75	Plugged	NT_	Plugged	NT	NT	DRY	Plugged	NT	NT	NT	NT	NT	NT	NT	NT	dry
1,2-Dichloroethane *	5	Plugged	NT	Plugged	NT	NT	DRY	Plugged	NT	NT	NT	NT	NT	NT	NT	NT	dry
1,1-Dichloroethene *	7	Plugged	NT	Plugged	NT	NT	DRY	Plugged	NT	NT	NT	NT	NT	NT	NT	NT	dry
1,1,1-Trichloroethane *	200	Plugged	NT	Plugged	NT	NT	DRY	Plugged	NT	NT	NT _	NT	NT	NT	NT	NT	dry
Trichloroethene *	5	Plugged	NT	Plugged	NT	NT	DRY	Plugged	NT	NT	NT	NT	NT	NT	NT	NT	dry
mg/L																	
Arsenic, dissolved	0.05	Plugged	NT	Plugged	NT	NT	DRY	Plugged	NT	NT	NT	NT	NT	NT	NT	NT	dry
Barium, dissolved	2.0	Plugged	NT	Plugged	NT	NT	DRY	Plugged	NT	NT	NT	NT	NT	NT	NT	NT	dry
Cadmium, dissolved	0.005	Plugged	NT	Plugged	NT	NT	DRY	Plugged	NT	NT	NT	NT	NT	NT	NT	NT	dry
Chromium, dissolved	0.1	Plugged	NT	Plugged	NT	NT	DRY	Plugged	NT .	Ŋ	NT	NT	NT	NT	NT	NT	dry
Lead, dissolved	0.015	Plugged	NT	Plugged	NT	NT	DRY	Plugged	NT	NT	NT	NT	NT	NT	NT	NT	dry
Mercury, dissolved	0.002	Plugged	NT	Plugged	NT	NT	DRY	Plugged	NT	NT	NT	NT	NT	NT	NT	NT	dry
Magnesium, dissolved		Plugged	NT	Plugged	NT	NT	DRY	Plugged	NT	NT	NT	NT	NT	NT	NT	NT	dry
Zinc, dissolved	2	Plugged	NT	Plugged	NT	NT	DRY	Plugged	NT	NT	NT	NT	NT	NT	NT	NT	dry
Iron, dissolved	_	Plugged	0.036	Plugged	0.066	<0.030	DRY	Plugged	2.89	0.073	<0.030	0.03	4.99	<0.030	<0.030	<0.030	dry
Copper, dissolved	1.3	Plugged	NT	Plugged	NT	NT	DRY	Plugged	NT	NT		NT .	NT	NT	NT	NT	dry
Chloride	_	Plugged	108	Plugged	<10	18	DRY	Plugged	32	<10	10	146	49	28	602	631	dry
Nitrogen, Ammonia	_	Plugged	<1.0	Plugged	<1.0	<1.0	DRY	Plugged	<1.0	<1.0	<1.0	<1.0	1.8	<1.0	<1.0	<1.0	dry
Chemical Oxygen Demand		Plugged	14	Plugged	<10	<10	DRY	Plugged	17	<10	<10	<10	13	27	<10	<10	dry
Total Organic Halogens	_	Plugged	NT	Plugged	ÑŤ	NT	DRY	Plugged	0.074	NT	NT	NT	0.019	NT	NT	NT	dry
Phenois		Plugged	NT	Plugged	NT	NT	DRY	Plugged	<0.100	NT	NT	NT	<0.100	NT	NT	NT	dry
pH	_	Plugged	7.8	Plugged	8.2	7.2	DRY	Plugged	7.5	7.6	8	7.7	7.7	_ 8	7.2	7.1	dry
Temperature, celsius		Plugged	7	Plugged	10	12	DRY	Plugged	9	13	10	10	11	14	8	7	dry
Conductivity, mv	-	Plugged	1378	Plugged	762	1585	DRY	Plugged	2895	949	1293	1685	1451	1775	2785	3575	dry
				U.A.W - Upg	radient aquif	er well											

NT - Not tested

D.G.W. - Downgradient groundwater well

D.A.W. - Downgradient aquifer well

U.G.W - Upgradient groundwater well

SOUTH TRENCHES

AMES-STORY ENVIRONMENTAL LANDFILL 85-SDP-13-91P MONITORING WELL SAMPLING RESULTS

			·															
1572	Aib	647	1653	996	1/67	1413	1422	9911	657	622	1377	7091	604_	6831	TN	TN		Conductivity, mv
13	qu	6	13	12	11	10	91	12	11	l l	8	Þl	Þl	8	TN	IN		Temperature, celsius
T.T	qu λ	7.7	2.7	T.T	2.8	4.8	2.8	2.8	4.8	£.8	1.8	8	€.8	6.7	TN	TN		Hq
TN	Aip	TN	IN		iN		IN		TN	TN	TN	TN	TN	TN	TN	TN		Phenois
TN	Λιp	IN	TN	TN	IN	IN	ΤN	IN	TN	TN	TN	IN		LN	1N	TN		Total Organic Halogens
01>	qιλ	13	39	01>	OI>	0l>	01>	01>	01>	<10	11	01>	01>	<10	TM	IN		Chemical Oxygen Demand
0.1>	Λιp	0.1>	5.2	0.1>	0.1>	0.1>	0.1>	0.1>	0.1>	0.1>	0.1>	0.1>	0.1>	0.1>	TN	LN		Nitrogen, Ammonia
7 6	qιλ	£Υ	233	81	Þl	39	34	32	01>	٦٤	83	91	<10	340	TN	TN		Chloride
IN	qιλ	TN	TN	TN	TN	TN	TN	TN	TN	TN	IN	TN	TN	TN	TN	TN	£.1	Copper, dissolved
39.6	Αυρ	<0.030	050.0>	050.0>	25.5	<0.030	0.042	72.0	28.4	SE.1	050.0>	8.2	780.0	050.0>	TN	TN		Iron, dissolved
TN	Αιp	TN	1N	TN	ΔN	TN	TN	IN	IN	TN	TN	TN	IN	TN	TN	IN	7	Zinc, dissolved
IN	(Lip	TN	TN	TN	ΙN	TN	TN	TN	1N	TN	TN	TN	TN	TN	TN	IN		Magnesium, dissolved
TN	Aup	TN	TN	1N	TN	TN	TN	IN	TN	TN	IN	TN	IN	TN	TN	TN	200.0	Mercury, dissolved
1N	qıλ	IN	TN	TN	TN	TN	ΙN	TN	TN	TN	TN	TN	TN	TN	TN	TN	210.0	Lead, dissolved
TN	Кир	TN	TN	TN	TN	TN	TN	TN	LN	TN	TN	IN	TN	TN	TN	TN	1.0	Chromium, dissolved
IN	Кıр	TN	TN	TN	ΤN	TN	TN	TN	TN	IN	IN	IN	TN	TN	ΤN	TN	200.0	Cadmium, dissolved
IN	Aup	TN	TN	TN	ΤN	TN	TN	TN	TN	ΤN	LN	ΙN	TN	TN	TN	TN	2.0	Barium, dissolved
TN	Кир	TN	TN	TN	ΤN	IN	TN	TN	TN	TN	TN	TN	TN	1N	TN	TN	90.0	Arsenic, dissolved
																		γβш
IN	/Lip	TN	TN	TN	TN	TN	TN	TN	TN	TN	IN	TN	TN	IN	TN	TN	S	Trichloroethene *
IN	Aup	TN	TN	TN	TN	TN	TN	TN	TN	TN	TN	TN	TN	TN	TN	TN	200	1,1,1-Trichloroethane *
TN	(up	TN.	TN	TN	TN	TN	LΝ	TN	TN	TN	LN	LN	TN	TN	TN	TN	L	1,1-Dichloroethene *
TN	Кıр	TN	1N	TN	ΤN	TN	TN	TN	TN	TN	IN	ŢN	TN	IN	ŢN	TN	S	1,2-Dichloroethane *
TN	Aup	TN	TN	TN	ŢN	IN	TN	TN	IN	TN	TN	IN	TN	TN	TN	TN	SL	1,4-Dichlorobenzene *
IN	Αυp	IN	TN	IN	TN	IN	TN	IN	TN	TN	IN	LN	TN	IN	TN	IN	S	Carbon tetrachloride *
TN	QI)	TN	TN	TN	TN N	LN	TN	ŢN	IN	IN	TN	TN	TN	IN	 >	TN	S	Senzene *
																		7/6n
9 MS	S MS	⊅ MS	EÞ WM	MW 42	I t MM	WW 40	65 WM	85 WM	8 WM	7 WM	9 MW	TEWM	9E MW	98 WM	दा प्रT	FIELD	LEVEL	ABTBMAAAA
ST9.5	NONITORIN	SURFACE	D.G.W	W.A.G	W.A.Q	D.G.W	W.D.Q	W.A.Q	W.A.Q	W.A.Q	D.G.W	w.e.u	W.A.U	HTOB			ACTION	
													900	March 17, 20	:3TAG	SAMPLING		

Accreditations: Iowa DNR: 095 New Jersey DEP: IA001 Kansas DHE: E-10287

ANALYTICAL REPORT

April 06, 2006

Work Order: 16C1039

Todd Whipple

Page 1 of 5

Work Order Information Report To

Date Received: 03/23/2006 9:55AM

Collector: Mitch Brown Phone: 515-233-0000

PO Number:

Fox Engineering Associates, Inc. 1601 Golden Aspen Drive, Suite 103

Ames, IA 50010

Project: Ames/Story C&D SLF

Project Number: [none]

Analyte	Re	esult	MRL	Method	Analyst Analyzed Qualifier
6C1039-01 MW 38	,			Matrix: Water	Collected: 03/17/06 11:55
Determination of Conventional Chemi	stry Parame	eters			
Chemical Oxygen Demand	<10	mg/l	10	EPA 410.4	LAR 03/24/06 12:35
Chloride	35	mg/l	10	EPA 9252	RVV 03/24/06 16:58
Nitrogen, Ammonia	<1.0	mg/l	1.0	SM 4500-NH3 F	LAR 03/24/06 13:10
Determination of Dissolved Metals					
Iron, dissolved	0.270	mg/l	0.030	EPA 6010B	LAR 03/24/06 9:58
6C1039-02 MW 39				Matrix: Water	Collected: 03/17/06 12:05
Determination of Conventional Chemi	stry Parame	eters			
Chemical Oxygen Demand	<10	mg/l	10	EPA 410.4	LAR 03/24/06 12:35
Chloride	34	mg/l	10	EPA 9252	RVV 03/24/06 16:58
Nitrogen, Ammonia	<1.0	mg/l	1.0	SM 4500-NH3 F	LAR 03/24/06 13:10
Determination of Dissolved Metals					
Iron, dissolved	0.042	mg/i	0.030	EPA 6010B	LAR 03/24/06 10:11
6C1039-03 MW 40	·····			Matrix: Water	Collected: 03/17/06 12:20
Determination of Conventional Chemi	stry Paramo	eters			
Chemical Oxygen Demand	<10	mg/l	10	EPA 410.4	LAR 03/24/06 12:35
Chloride	39	mg/l	10	EPA 9252	RVV 03/24/06 16:58
Nitrogen, Ammonia	<1.0	mg/l	1.0	SM 4500-NH3 F	LAR 03/24/06 13:10
Determination of Dissolved Metals					
Iron, dissolved	< 0.030	mg/l	0.030	EPA 6010B	LAR 03/24/06 10:15
16C1039-04 MW 41		· · · · · · · · · · · · · · · · · · ·	, , , , , , , , , , , , , , , , , , , 	Matrix: Water	Collected: 03/17/06 12:30
Determination of Conventional Chem	istry Param	eters			
Chemical Oxygen Demand		mg/l	10	EPA 410.4	LAR 03/24/06 12:35
Chloride	14	mg/l	10	EPA 9252	RVV 03/24/06 16:58
Nitrogen, Ammonia	<1.0	mg/l	1.0	SM 4500-NH3 F	LAR 03/24/06 13:10

Determination of Dissolved Metals

Work Order: 16C1039

April 06, 2006 Page 2 of 5

Analyte	Re	esult	MRL	Method	Analys	st Analyzed Qualifier
16C1039-04 MW 41	·	•		Matrix:Water		Collected: 03/17/06 12:30
Determination of Dissolved Metals						
Iron, dissolved	2.52	mg/l	0.030	EPA 6010B	LAR	03/24/06 10:20
16C1039-05 MW 36		7	· · · · ·	Matrix: Water		Collected: 03/17/06 12:45
Determination of Conventional Chemist						
Chemical Oxygen Demand	<10	mg/l	10	EPA 410.4	LAR	03/24/06 12:35
Chloride	<10	mg/l	10	EPA 9252	RVV	03/24/06 16:58
Nitrogen, Ammonia	<1.0	mg/l	1.0	SM 4500-NH3 F	LAR	03/24/06 13:10
Determination of Dissolved Metals						
Iron, dissolved	0.057	mg/l	0.030	EPA 6010B	LAR	03/24/06 10:24
16C1039-06 MW 37	, , , , , , , , , , , , , , , , , , , ,			Matrix: Water	:	Collected: 03/17/06 12:55
Determination of Conventional Chemis	try Param	eters				•
Chemical Oxygen Demand	<10	mg/l	10	EPA 410.4	LAR	03/24/06 12:35
Chloride		mg/l	10	EPA 9252	RVV	03/24/06 16:58
Nitrogen, Ammonia	<1.0	mg/l	1.0	SM 4500-NH3 F	LAR	03/24/06 13:10
Determination of Dissolved Metals						
Iron, dissolved	2.80	mg/l	0.030	EPA 6010B	LAR	03/24/06 10:36
16C1039-07 MW 35				Matrix: Water		Collected: 03/22/06 09:15
Determination of Conventional Chemis	try Param	eters				
Chemical Oxygen Demand	<10	mg/l	10	EPA 410.4	LAR	03/24/06 12:35
Chloride		mg/l	100	EPA 9252	RVV	
Nitrogen, Ammonia	<1.0	mg/l	1.0	SM 4500-NH3 F	LAR	03/24/06 13:10
Determination of Dissolved Metals						
Iron, dissolved	< 0.030	mg/l	0.030	EPA 6010B	LAR	03/24/06 10:41
16C1039-08 MW 34	·			Matrix: Water		Collected: 03/22/06 09:35
Determination of Conventional Chemis	try Param	eters				
Chemical Oxygen Demand	•	mg/l	10	EPA 410.4	LAR	03/24/06 12:35
Chloride		mg/l	10	EPA 9252	RVV	03/24/06 16:58
Nitrogen, Ammonia		mg/l	1.0	SM 4500-NH3 F	LAR	03/24/06 13:10
Determination of Dissolved Metals						
Iron, dissolved	< 0.030	mg/l	0.030	EPA 6010B	LAR	03/24/06 10:45
16C1039-09 MW 25				Matrix:Water		Collected: 03/22/06 09:45
Determination of Conventional Chemis						

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety. Samples were preserved in accordance with 40 CFR for pH adjustment unless otherwise noted.

MRL= Method Reporting Limit.

Work Order: 16C1039

April 06, 2006 Page 3 of 5

WORK Order: 10C1039							Page 3 01 5
Analyte	Re	sult	MRL	Method	Analy	st Analyzed	Qualifier
16C1039-09 MW 25				Matrix:Water		Collected: 03/	
Determination of Conventional Chemi	istry Parame	ters		2,240,200,000		Contolica. VS/	22,00 073
Chloride		mg/l	10	EPA 9252	RVV	03/24/06 16	-58
Nitrogen, Ammonia	<1.0	_	1.0	SM 4500-NH3 F	LAR		
Title Ogon, 7 minioma		6	1.0	5111 1500 11115 1		00,2,,00	•••
Determination of Dissolved Metals							
Iron, dissolved	0.030	mg/l	0.030	EPA 6010B	LAR	03/24/06 10	:49
16C1039-10 MW 33				Matrix:Water		Collected: 03/	22/06 09:55
Determination of Conventional Chemi	istry Parame	eters					
Chemical Oxygen Demand	13	mg/l	10	EPA 410.4	LAR	03/24/06 12	:35
Chloride	49	mg/l	10	EPA 9252	RVV	03/24/06 16	:58
Nitrogen, Ammonia	1.8	mg/l	1.0	SM 4500-NH3 F	LAR	03/24/06 13	:10
Phenols, total	< 0.100	mg/l	0.100	EPA 9065	KRV	03/28/06 15	:47
Total Organic Halogens (TOX)	0.019	mg/l	0.010	EPA 9020	RSW	04/05/06 0:	00
Determination of Dissolved Metals							
Iron, dissolved	4.99	mg/l	0.030	EPA 6010B	LAR	03/24/06 10	:53
16C1039-11 MW 32				Matrix:Water		Collected: 03/	22/06 11:40
Determination of Conventional Chemi	istry Parame	eters					
Chemical Oxygen Demand	-	mg/l	10	EPA 410.4	LAR	03/24/06 12	:35
Chloride	10	mg/l	10	EPA 9252	RVV	03/24/06 16	:58
Nitrogen, Ammonia	<1.0	mg/l	1.0	SM 4500-NH3 F	LAR	03/24/06 13	:10
Determination of Dissolved Metals					•		
Iron, dissolved	< 0.030	mg/l	0.030	EPA 6010B	LAR	03/24/06 10	:58
16C1039-12 MW 31			,	Matrix:Water		Collected: 03/	22/06 11:55
Determination of Conventional Chemi	istry Parame	eters					
Chemical Oxygen Demand		mg/l	10	EPA 410.4	SNT	03/29/06 9:	58
Chloride	32	mg/l	10	EPA 9252	RVV	03/24/06 16	:58
Nitrogen, Ammonia	<1.0		1.0	SM 4500-NH3 F	LAR	03/24/06 13	:10
Phenols, total	< 0.100		0.100	EPA 9065	KRV	03/28/06 15	:47
Total Organic Halogens (TOX)	0.074	-	0.010	EPA 9020	RSW	04/05/06 0:	00
Determination of Dissolved Metals							
Iron, dissolved	2.89	mg/l	0.030	EPA 6010B	LAR	03/24/06 11	:02
16C1039-13 MW 23				Matrix:Water		Collected: 03/	22/06 12:05
Determination of Conventional Chemi	istrv Parame	eters				,	
Chemical Oxygen Demand	•	mg/l	10	EPA 410.4	SNT	03/29/06 9:	:58
Chloride Chloride		mg/l	10	EPA 9252	RVV		
Chiorac	10	*** 6' I	10	-J1 11 / 24 J E	201 1	05,2 ,, 00 10	

Work Order: 16C1039

April 06, 2006 Page 4 of 5

Analyte	Re	sult	MRL	Method	Analys	st Analyzed Qualifier
16C1039-13 MW 23		•		Matrix: Water	, , , , , , , , , , , , , , , , , , , ,	Collected: 03/22/06 12:05
Determination of Conventional Chemis	stry Parame	eters				
Nitrogen, Ammonia	<1.0	mg/l	1.0	SM 4500-NH3 F	LAR	03/24/06 13:10
Det a tradition of Discolar differents						
Determination of Dissolved Metals	<0.020	/1	0.000	ED 4 COLOD	TAD	02/24/06 11:06
Iron, dissolved	<0.030	mg/i	0.030	EPA 6010B	LAR	03/24/06 11:06
16C1039-14 MW 30		•		Matrix: Water		Collected: 03/22/06 12:15
Determination of Conventional Chemis	stry Parame	eters				
Chemical Oxygen Demand	-	mg/l	10	EPA 410.4	SNT	03/29/06 9:58
Chloride		mg/l	10	EPA 9252	RVV	03/24/06 16:58
Nitrogen, Ammonia	<1.0	_	1.0	SM 4500-NH3 F	LAR	03/24/06 13:10
	1.0		1.0	241 4200-14112 1.		22.2 20 22.20
Determination of Dissolved Metals					.	
Iron, dissolved	0.073	mg/l	0.030	EPA 6010B	LAR	03/24/06 11:10
16C1039-15 MW 42		. ,		Matrix: Water		Collected: 03/22/06 12:30
Determination of Conventional Chemis	stry Parame	eters				· · · · ·
Chemical Oxygen Demand		mg/l	10	EPA 410.4	SNT	03/29/06 9:58
Chloride	18	mg/l	10	EPA 9252	RVV	03/24/06 16:58
Nitrogen, Ammonia	<1.0	mg/l	1.0	SM 4500-NH3 F	LAR	03/24/06 13:10
Determination of Dissolved Metals						
Determination of Dissolved Metals Iron, dissolved	< 0.030	ma/1	0.030	EPA 6010B	LAR	03/24/06 11:14
non, dissolved	~0.030	1112/1	0.030	EPA 0010B		03/24/00 11:14
16C1039-16 MW 43				Matrix: Water		Collected: 03/22/06 12:40
Determination of Conventional Chemi	stry Parame	eters				
Chemical Oxygen Demand	39	mg/l	10	EPA 410.4	SNT	03/29/06 9:58
Chloride		mg/l	100	EPA 9252	RVV	03/24/06 16:58
Nitrogen, Ammonia	5.2	mg/l	1.0	SM 4500-NH3 F	LAR	03/24/06 13:10
Determination of Dissolved Metals						
Iron, dissolved	< 0.030	mg/l	0.030	EPA 6010B	LAR	03/24/06 11:27
16C1039-17 SW 1				Matrix: Water		Collected: 03/22/06 13:15
Determination of Conventional Chemi	istrv Parami	eters		1,1401111, 1, 4001		2011-1174.
Chemical Oxygen Demand		mg/l	10	EPA 410.4	SNT	03/29/06 9:58
Chloride		mg/l	100	EPA 9252	RVV	03/27/06 14:26
Nitrogen, Ammonia		mg/l	1.0	SM 4500-NH3 F	LAR	03/24/06 13:10
14th opon, 7 minisonia	-1.0		1.0	J CLIMI-MACE INTO	ے۔ ۔۔۔	
Determination of Dissolved Metals						•
Iron, dissolved	< 0.030	mg/l	0.030	EPA 6010B	LAR	03/24/06 11:31

16C1039-18

Matrix: Water

Collected: 03/22/06 13:30

Work Order: 16C1039

April 06, 2006 Page 5 of 5

Analyte	R	esult	MRL	Method	Analyst	Analyzed	Qualifier
16C1039-18 SW 2				Matrix: Water		Collected: 03/22	
Determination of Conventional Chemis	stry Param	eters					
Chemical Oxygen Demand		mg/l	10	EPA 410.4	SNT	03/29/06 9:58	}
Chloride	631	mg/l	100	EPA 9252	RVV	03/27/06 14:2	б
Nitrogen, Ammonia	<1.0	mg/l	1.0	SM 4500-NH3 F	LAR	03/24/06 13:1	0
Determination of Dissolved Metals							
Iron, dissolved	<0.030	mg/l	0.030	EPA 6010B	LAR	03/24/06 11:3	5
16C1039-19 SW 4	***************************************			Matrix: Water		Collected: 03/22	/06 13:45
Determination of Conventional Chemis							
Chemical Oxygen Demand		mg/l	10	EPA 410.4	SNT	03/29/06 9:58	
Chloride		mg/l	10	EPA 9252	RVV	03/27/06 14:20	
Nitrogen, Ammonia	<1.0	mg/l	1.0	SM 4500-NH3 F	LAR	03/24/06 13:10)
Determination of Dissolved Metals							
Iron, dissolved	< 0.030	mg/l	0.030	EPA 6010B	LAR	03/24/06 11:40	0
16C1039-20 SW 6		 , 		Matrix: Water	,	Collected: 03/22	/06 14:00
Determination of Conventional Chemis	try Param	eters					
Chemical Oxygen Demand		mg/l	10	EPA 410.4	SNT	03/29/06 9:58	}
Chloride	94	mg/l	10	EPA 9252	RVV	03/27/06 14:20	6
Nitrogen, Ammonia	<1.0	mg/l	1.0	SM 4500-NH3 F	LAR	03/24/06 13:10	o `
Determination of Dissolved Metals							
Iron, dissolved	3.66	mg/l	0.030	EPA 6010B	LAR	03/24/06 11:4	4

End of Report

Keystone Laboratories, Inc. Jeffrey King, Ph.D.

Laboratory Director

LABORATORIES, INC.

600 E. 17th St. S. Phone: 641-792-8451 Newton, IA 50208 641-792-7989

3012 Ansborough Ave. Waterloo, IA 50701 www.keystonelabs.com Phone: 319-235-4440 Fax: 319-235-2480

CUSTODY RECORD 1304 Adams

Kansas City, KS 66103 Phone: 913-321-7856 Fax: 913-321-7937 Fax:

OF N

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		35.06			Red Swark	Time	,	Ó
3	Remarks: Mile Sander Laule Sein Acid Merce	,	Date	e)	Received for Lab by: (Signature)	Date	ге)	Relinquished by: (Signature)
	Standard		Time		7	Time xos		Mass
	Turn-Around:		Date		Page Received by: (Signature)	Date 3/2	re)	Relinquished by: (Signature)
		X	2	2	Mandor Wed 33	755	3/22	MW 33
		X	٤,	W	Mountar Well 25	545	3/22	MW 25
		8	3	~	Manufor Well 34	286	3/22	MW 34
		₹ P	2	 	Montochiell 35	915	3/22	MW 35
		8 O	٤,	w	Mondor Well 37	1258	3/17	MW 37
		Ŋ	200	7	Mandof Well 36	1245	3/17	MW 36
		8	2	W	Manufact wheat y	1230	3/17	Man 4/
		X	2	7	Mumber Well 40	1220	3/17	MW YO
		A A	ξ,	W	Mander Well 39	1205	3/17	MW 39
		\$\\ \times_{\text{\chi}}	3	\ <u>'</u>	Manufac Well 38	1155	3/17/06	MW 38
		,	MATRIX GRAB/CO	NO. OF, C	SAMPLE LOCATION	TIME	DATE	CLIENT SAMPLE NUMBER
		<u>~</u>	MPOS	ONTAI				
				VERS				
1 1	NALYSES REQUIRED	AN	_					
	Keystone Quote No.:	,			FAX:			PHONE:
1 :	PHONE:		290-9004		PHONE: (5/8)			CITY/ST/ZIP:
ਜ ∶	CITY/ST/ZIP:				CITY/ST/7IP	155	1004-99A-954	ADDRESS: (00)
• `	COMPANY NAME	System Long	× Cho	7	COMPANY NAME:	0	300	SITE NAME: AMLS
	NAME:		Whise le	of b	NAME: O	ماس	Tellow Tellow	SAMPLER: WATCH SCOL

18%

Original - Return with Report • Yellow - Lab Copy

Pink - Sampler Copy

FORM: CCR 7-9

CI CITODAY RECORD RD **Veystone** 600 E. 17th St. S. 3012 Ansborough Ave. 1304 Adams Waterloo, IA 50701 Kansas City, KS 66103 Newton, IA 50208 Phone: 913-321-7856 Phone: 319-235-4440 Phone: 641-792-8451 PAGE_ZOF_Z 641-792-7989 Fax: 319-235-2480 Fax: 913-321-7937 LABORATORIES, INC. www.kevstonelabs.com PRINT OR TYPE INFORMATION BELOW SAMPLER: Which りついん BILL TO: REPORT TO: NAME: Same as sheet / some cs sheet 1 NAME: Ames C+O COMPANY NAME:_____ COMPANY NAME: SITE NAME: ADDRESS: ADDRESS: ADDRESS: CITY/ST/ZIP: CITY/ST/ZIP: CITY/ST/ZIP: PHONE: PHONE:_ PHONE:__ FAX:____ Keystone Quote No.:____ (If Applicable) ANALYSES REQUIRED LAB USE ONLY CONTAINERS LABORATORY WORK ORDER NO. 3RAB/COMPOSITE SAMPLE TEMPERATURE V 4 UPON RECEIPT: LABORATORY SAMPLE MATRIX NUMBER CLIENT SAMPLE CONDITION/COMMENTS SAMPLE NUMBER SAMPLE LOCATION MW 32 3/22 1140 Montor Well 32 G/20 3/22 1155 Mondarale U.S. 1205 1215 Z 1240 SW 115 3/ZL 130 200 Date 3/ Relinquished by: (Signature) Received by: (Signature) Date Turn-Around: **□** Standard Time 805 Time Contact Lab Prior to Submission

- Return with Report • Yellow - Lab C

Received for Lab by: (Signature)

Relinquished by: (Signature)

Date

Time

Pink - Sampler Copy

Date 3-3-16

Remarks: Metals samples level been field Affects

FORM: CCR 7-9

ځ.

Accreditations: Iowa DNR: 095 New Jersey DEP: IA001 Kansas DHE: E-10287

ANALYTICAL REPORT

Page 1 of 2

April 12, 2006

Work Order: 16C1240

Report To Work Order Information

Fox Engineering Associates, Inc. 1601 Golden Aspen Drive. Suite 103 Ames, IA 50010

Todd Whipple

Date Received: 03/29/2006 9:45AM Collector: Brown, Mitch Phone: 515-233-0000

PO Number:

Project: Landfill Project Number: Ames און כבּא ראישרונים

Analyte	Result	MRL	Method	Analyst	Analyzed Qualifier
16C1240-01 MW-8			Matrix: Water		Collected: 03/27/06 14:30
Determination of Conventional Chemistry Parameters	arameters				
Chemical Oxygen Demand	<10 mg/l	10	EPA 410.4	LKM	03/30/06 17:10
Chloride	<10 mg/l	10	EPA 9252	SNT	03/31/06 15:12
Nitrogen, Ammonia	<1.0 mg/l	1.0	SM 4500-NH3 F	LKM	03/30/06 10:42
Determination of Dissolved Metals	4.82 mg/l	0.030	EPA 6010B	TNS	03/31/06 13:01
16C1240-02 MW-7			Matrix:Water		Collected: 03/27/06 14:50
on of Con	<pre>carameters continued continued</pre>	5	FDA 410 4	LKM	03/30/06 17:10
Chloride	15 mg/l	10	EPA 9252	SNT	03/31/06 15:12
Nitrogen, Ammonia	<1.0 mg/l	1.0	SM 4500-NH3 F	LKM	03/30/06 10:42
Determination of Dissolved Metals Iron, dissolved	1.32 mg/l	0.030	EPA 6010B	SNT	03/31/06 13:06
16C1240-03 MW-6			Matrix:Water		Collected: 03/27/06 15:05
Determination of Conventional Chemistry Parameters Chemical Oxygen Demand Ruberide 83 mg	oarameters .11 mg/l 83 mg/l	10	EPA 410.4 EPA 9252	LKM	03/30/06 17:10 03/31/06 15:12
Nitrogen, Ammonia		1.0	SM 4500-NH3 F	LKM	03/30/06 10:42
Determination of Dissolved Metals Iron, dissolved	<0.030 mg/l	0.030	EPA 6010B	SNT	03/31/06 13:10
16C1240-04 MW-5/mw-29			Matrix:Water		Collected: 03/27/06 15:20
Determination of Conventional Chemistry Parameters <10 mg	Parameters <10 mg/l	10	EPA 410.4	LKM	03/30/06 17:10
Chloride Nitrogen, Ammonia	<10 mg/l <1.0 mg/l	1.0	EPA 9252 SM 4500-NH3 F	SNT	03/31/06 15:12 03/30/06 10:42
Determination of Dissolved Metals					

Determination of Dissolved Metals

Work Order: 16C1240

April 12, 2006 Page 2 of 2

Analyte		R	esult	MRL	Method	Analyst	Analyzed	Qualifier
16C1240-04	MW-5		, ,		Matrix: Water	(Collected: 03	3/27/06 15:20
Determination of	Dissolved Metals							
Iron, dissolved		0.066	mg/l	0.030	EPA 6010B	SNT	03/31/06 1	3:14
16C1240-05	MW-4/mw-28				Matrix:Water	(Collected: 03	/27/06 15:35
Determination of	Conventional Chemistry	v Param	eters					
Chemical Oxyge	n Demand	14	mg/l	10	EPA 410.4	LKM	03/30/06 1	7:10
Chloride		108	mg/l	10	EPA 9252	SNT	03/31/06 1	5:12
Nitrogen, Ammor	nia	<1.0	mg/l	1.0	SM 4500-NH3 F	LKM	03/30/06 1	0:42
Determination of	Dissolved Metals							
Iron, dissolved		0.036	mg/l	0.030	EPA 6010B	SNT	03/31/06 1	3:18

End of Report

Jeffey King

Keystone Laboratories, Inc. Jeffrey King, Ph.D. Laboratory Director

600 E. 17th St. S. Newton, IA 50208

유

Relinquished by: (Signature) Relinquished by: (Signature) SITE NAME: PRINT OR TYPE INFORMATION BELOW
SAMPLER: Mythyler 1970 PHONE: CITY/ST/ZIP: ADDRESS: MW. ME IN M U LABORATORIES, INC W (2) SAMPLE NUMBER CLIENT 觀 TACS 3/2 12/2 3/20 DATE Time 2:50 230 Date 3/28/06 Date 250 335 720 SC SC Time TIME CHAIN OF GUSIOUTE CORD Marray woll Munda-Well Mandor well Mundorwell S/ SAMPLE LOCATION Received by: (Signature) Received for Lab by: (Signature) Phone: 641-792-8451 4 mart FAX: PHONE: CITY/ST/ZIP: COMPANY NAME: 641-792-7989 ADDRESS: REPORT TO: MED 08/21/2 22 @c-0 1220-9004 AMS, TH NO. OF CONTAINERS 3012 Ansborough Ave. Phone: 319-235-4440 Waterloo, IA 50701 www.keystonelabs.com too knewall 2 て ٤ Date 3 MATRIX Time 0945 Time 319-235-2480 (J 0 0 GRAB/COMPOSITE (J 30-66 B X Ø Х ANALYSES REQUIRED Turn-Around:
Standa Remarks: Standard 1304 Adams Phone: 913-321-7856 Kansas City, KS 66103 Mulades someter have COMPANY NAME: Laste Wirks Part, last of Bacs NAME ISLA STAR PRICE PHONE: CITY/ST/ZIP: ADDRESS: Keystone Quote No.: BILL TO: 913-321-7937 VABORATORY WORK ORDER NO. Rush ATINO ESTI EVAL been bill of Horse Contact Lab Prior to Submission PAGE_ റ് Works Vincotor 2010

0

0

Original - Return with Report

Yellow - Lab Copy

Pink - Sampler Copy

FORM: CCR 7

Site Name AMES-STORY ENVIRONMENTAL LANDFILL Permit No. 85-SDP-13-91P	
Monitoring Well/Piezometer No. 500-6 Date/Time 3/22/06 2:00	
Name of person sampling Mitch Brown	
A.) TYPE OF MONITORING POINT	
Stream Open Tile Road Ditch Tile with Riser Drainage Ditch Other	
B.) PURPOSE OF MONITORING POINT	
Upstream Downstream Vithin Landfill Other	
C.) MONITORING POINT CONDITIONS	
General description/condition of monitoring point	_
Was monitoring point dry? Was water flowing? Was water flowing? If yes, estimate quantity If yes, estimate depth	
Was water discolored? Does water have odor? Wo If yes, descibe below.	
Comments Rust where the experience algorith on bottom and sides of street	_
D.) FIELD MEASUREMENT	
Weather Conditions Clouds 40°F	
Field Measurments (after stabilization): Temperature Equipment Used HACH COMPANY FOCKET PAL PH Equipment Used HACH COMPANY FOCKET PAL Specific Conditions ISTA Units MOCKET Equipment Used HACH COMPANY POCKET PAL	
Comments	

Site Name Am	ES-STORY S	Environmental	LANDFIL	Permit No	ଷ 5-	SDP-1	3-91P
Monitoring Well/	Piezometer No.			Upgradient _			
Name of person	sampling	Mitch Bro	ww .	Downgradie <u>n</u>			
A.)	MONITORING V	VELL/PIEZOMETER	CONDIT	ONS			
	Vell/Piezometer f no, explain	Properly Capped?	YES		Standing W yes, expla	/ater or Litter	7 No
B.)	GROUNDWATE	R ELEVATION MEA	SUREME	NT (+/- 0.01 f	oot, MSL)		
	Elevation: Top Depth of Well Equipment Use	of inner well casing 21.7 d 50LIN	Inside	S Ground Casing Diame		1 940 (0 hes) z.o	
	Grou	ındwater Level (+/- 0	.01 foot be	elow top of inn	er casing.	MSL):	
		Date/Time		Depth to Groundwater		Groundwate Elevation	:F
*Afte	ore Purging er Purging fore Sampling	3/27/06 12:00 3/27/06 3:05		877 1187 885			
C.)	WELL PURGIN	G ·			_		
	Quantity of Wa No.of Well Volu Was well pump	ter Removed from W Imes (based on curro red/bailed dry?	/ell (gallon ent water l	s) 6 ² evel) 3			
	Equipment use Bailer typ Pump typ If not ded	e lisposable			ed Bailer ed Bailer		
D.)	FIELD MEASU	REMENT					
	Temperatu Equ pH Equ Specific Condi	ents (after stabilization in the stabilization in t	8 H CON JCH C	Units (Company)	POCKE	PAL F PAL XET PA	
Со	mments						
	NOTE: Attach L	aboratory Report and Iwater monitoring po	d 8-12" x ints. One	11" site plan sl map per samp	howing loc oling round	ations of all s	urface and

Site Name	AMES-STORY E	vuironmental	LANDFILLP	ermit No	<u> හිട-</u>	SDP-	13-91P
Monitoring \	Well/Piezometer No.	MW-7		Ipgradient _	/		
Name of pe	rson sampling	Mitch Brow	N _	owngradie <u>n</u>	<u>IC</u>		
	A.) MONITORING W	ELL/PIEZOMETER	CONDITIO	NS			
	Well/Piezometer P	roperly Capped?	YES			Vater or Litt a <u>in</u>	er? No
	B.) GROUNDWATER	RELEVATION MEA	SUREMEN	T (+/- 0.01 f	oot, MSL)		
	Elevation: Top of Depth of Well Equipment Used	inner well casing 53 SOLINST	943·21 Inside C	Ground asing Diame	d Elevatio eter (in inc	n <u>940 ·</u> ches) z.c	<u>65</u> ,"
,	Groun	dwater Level (+/- 0.	.01 foot belo	w top of inn	er casing,	MSL):	
		Date/Time		epth to Froundwater		Groundwa Elevation	nter
	Before Purging *After Purging *Before Sampling	3/27/06 10:50 3/27/06 2:50		23 <u>19</u> 553 - 394			<u> </u>
	C.) WELL PURGING	,					
		r Removed from W nes (based on curre d/bailed dry?		/el) /			
	Equipment used Bailer type Pump type If not dedic	מאלפנים בת צרן	eaning	'Dedicate		No	
	D.) FIELD MEASUR	EMENT					
	Temperatur Equip pH Equip Specific Condition	nts (after stabilization e ment Used HAC ment Used HAC ment Used HAC ment Used TAC men	H COMP	Inits Pary Port April Inits April April	OC CKET POCKE D/Cm	PAL T PAL XET F	71
	Comments						 . .
		boratory Report and vater monitoring poi					I surface and

Site Name <u>A</u>	MES-STORY EN	vironmental	LANDFIL	Permit No.	85-	SDP-	13-91P
Monitoring We	ell/Piezometer No.	MW-8		Upgradient			
Name of perso	on sampling (Mitch Brown	_ ر	Downgradie	nt		
A.) MONITORING WEI	LL/PIEZOMETER	CONDIT	ONS			
	Well/Piezometer Pro	perly Capped?	YES_			later or Litte	
В.	.) GROUNDWATER I	ELEVATION MEA	SUREME	NT (+/- 0.01	foot, MSL)		
	Elevation: Top of in Depth of Well Equipment Used	nner well casing (742.70 Inside	Grour Casing Diam	nd Elevation neter (in inc		65
	Ground	water Level (+/- 0,	01 foot be	elow top of in	ner casing,	MSL):	
		Date/Time		Depth to Groundwate	r	Groundwa Elevation	ater
4٠	efore Purging After Purging Before Sampling	3/21/06/0:35 3/21/06 2:30		35 28 49 20 36 95			~
С	.) WELL PURGING				,		
	Quantity of Water No.of Well Volume Was well pumped	es (based on curre	nt water l		12		
	Equipment used: Bailer type Pump type If not dedica	D:3005044 ted, method of cle	aning		ted Bailer ted Bailer	No	
D).) FIELD MEASURE	MENT					
	pHEquipm Specific Condition	s (after stabilization in the	n 38° II H CON CH CO HACLT	Units w	POCKE	PAL T PAL XET F	} L
(Comments						
	NOTE: Attach Labo groundwa	oratory Report and ter monitoring poi					l surface and

Site Name	AMES-STORY E	vurronmental	LANDFILL Permit No	o. <u>85-</u>	SDP-1	3-91P
Monitoring	Well/Piezometer No.	MW-23	Upgradier		·	
Name of p	erson sampling		Downgrad	ile <u>nt</u>		
	A.) MONITORING W	ELL/PIEZOMETER	CONDITIONS			
	Well/Piezometer P	roperly Capped?	YES	Standing \ If yes, exp	Nater or Litter Ia <u>in</u>	2 No
	B.) GROUNDWATER	ELEVATION MEA	SUREMENT (+/- 0.0	01 foot, MSL)	
	Elevation: Top of Depth of Well Equipment Used	inner well casing 27.86 SOLINST	945.98 Gro Inside Casing Di		on_ 943 · 4 ches) Z·o·	
	Groun	dwater Level (+/- 0.	01 foot below top of	inner casing	, MSL):	
		Date/Time	Depth to Groundwa	ater	Groundwate Elevation	er
	Before Purging *After Purging *Before Sampling	3/20/06 1:25	2569			
	C.) WELL PURGING					
		r Removed from W nes (based on curro d/bailed dry?		3		
	Equipment used Bailer type Pump type If not dedic	1)15 posable	'Dedi	cated Bailer cated Bailer	<i>N</i> ₀	
	D.) FIELD MEASURI	EMENT				
	Temperatur Equip pH Equip Specific Condition	nts (after stabilizations) ment Used HAC ment Used HAC ment Used HAC ons /585		NSkm.	PAL T PAL	
	Comments		····			 ~ .
	NOTE: Attach La groundy	boratory Report and vater monitoring po	d 8-12" x 11" site pla ints. One map per sa	n showing lo ampling roun	cations of all : d.	surface and

Site Name	AMES-STORY	Environmental	LANDFILL Permit No.	<u>85-</u>	SDP-13-	91P
Monitoring \	Well/Piezometer No	. <u>MW-Z4</u>	Upgradient Downgradie	nt .		
Name of pe	rson şampling	Mitch Brown)	nt 🗸	3.	
	A.) MONITORING	WELL/PIEZOMETER	CONDITIONS			
	Well/Piezomete If no, explain	r Properly Capped?		Standing V If yes, expl	Vater or Litter <u>? </u>	lo
	B.) GROUNDWAT	ER ELEVATION MEA	SUREMENT (+/- 0.01	foot, MSL)		
	Depth of Well	of inner well casing 20:00 sed 50LINST	939.44 Grour Inside Casing Diam	nd Elevatio neter (in inc	n 936.94 thes) 2.0"	
	Gro	oundwater Level (+/- 0	.01 foot below top of in	ner casing,	MSL):	
		Date/Time	Depth to Groundwate	r	Groundwater Elevation	
	Before Purging *After Purging *Before Sampling	3/20/00	005			
	C.) WELL PURGI	NG				
	No.of Well Vo	ater Removed from Wilumes (based on currently ped/bailed dry?	ent water level)			
	Equipment us Bailer ty Pump ty If not de	pe	Deulca	ted Bailer ted Bailer		
	D.) FIELD MEASI	JREMENT				•
	Tempera Eq pH Eq Specific Con	nents (after stabilization ture uipment Used HAC uipment Used HAC uipment Used HAC uipment Used HAC	Units	FOCKE TOCKE	FAL T FAL XET FAL	
	Comments					<u>.</u>
			d 8-12" x 11" site plan s ints. One map per sam			ce and

Site Name	AMES-STORY EN	vironmental	LANDFIL	Permit No	<u> ୫</u> 5-	SDP-13	-91P
Monitoring \	Well/Piezometer No.	MW-25		Upgradient_			
Name of pe	rson sampling $$	litch Brown	J	Downgradie <u>r</u>	IL V		
	A.) MONITORING WE	LL/PIEZOMETER	CONDIT	IONS			
	Well/Piezometer Pro	operly Capped?	YES		Standing V f yes, expl	Vater or Litter?	No
	B.) GROUNDWATER	ELEVATION MEA	SUREME	NT (+/- 0.01 f	oot, MSL)		
	Elevation: Top of i Depth of Well Equipment Used	nner well casing 19.5 504105T	906. Inside	34 Groun Casing Diam	d Elevation eter (in inc		14
	Ground	water Level (+/- 0.	01 foot be	elow top of inn	er casing,	MSL):	
	,	Date/Time		Depth to Groundwater		Groundwater Elevation	
	Before Purging *After Purging *Before Sampling	3/20/06 12:15 1/22/06 9:45		992 992 7000			
	C.) WELL PURGING				•		
	Quantity of Water No.of Well Volum Was well pumped	es (based on curre	ent water				
	Equipment used: Bailer type Pump type If not dedica	Disposable Lited, method of cle	aning		ed Bailer ed Bailer		
	D.) FIELD MEASURE	MENT					
•	pH Equipn Specific Condition	s (after stabilization nent Used HAC nent Used HAC ns 1685	10 H CON	Units	POCKE S/Cm	PAL T. PAL XET PAL	
	Comments			·			
	NOTE: Attach Lab groundwa	oratory Report and atter monitoring poi	d 8-12" x ints. One	11" site plan s map per samp	howing loo bling round	cations of all su	rface and

Site Name <u>A</u> r	MES-STORY	Environ	mental	LANDFILL	Permit No	<u> පි</u> ട-	SDP-	<u>13-91P</u>
Monitoring We	ell/Piezometer No	MU	1-28		Upgradient_			
Name of perso	on sampling	Mitch	Brown	J	Downgradier	nt 🗸		
A .) MONITORING	•			ONS			
	Well/Piezometer	Properly C	Capped?	YES_		Standing W f yes, expla	/ater or Litte ain	er? No
В.) GROUNDWAT	ER ELEVA	TION MEAS	SUREME	NT (+/- 0.01 f	foot, MSL)		
	Elevation: Top Depth of Well Equipment Us	22.	7	Inside	Casing Diam	d Elevatior eter (in inc	94; hes) z.c	2.55
	Gro	undwater L	.evel (+/- 0.0	01 foot be	elow top of inr	ner casing,	MSL):	
		∙ Date/	Time		Depth to Groundwater	r	Groundwa Elevation	ter
*A	efore Purging After Purging Before Sampling	3/27 ₁	106 3:35		1238			
. C	.) WELL PURGI	1G			.•			
	Quantity of W No.of Well Vo Was well pum	lumes (bas	ed on curre			8		
	Equipment us Bailer ty Pump ty If not de	pe <i>[)</i> pe	ارکوره و s ethod of clea			ted Bailer ted Bailer	_ No.	
D).) FIELD MEASU	JREMENT						
	pH Eq Specific Cond	nents (after ture uipment Us uipment Us	stabilization 7 sed HAC 7 sed HAC 1378	H CON	 _Units	POCKET POCKET POCKET	PAL TPAL XET F	X L
(Comments	<u> </u>						······································
	NOTE: Attach groun				I1" site plan s map per sam			I surface and

Site Name	AMES-STORY	Environmental		t No. <u>85-</u>	SDP-13-9	<u> 71P</u>
Monitoring \	Well/Piezometer No	Mitch Brow	Upgra		· · · · · · · · · · · · · · · · · · ·	
Name of pe	rson sampling	Mitch Brow	Lown!	gradie <u>nt</u>		
	A.) MONITORING	WELL/PIEZOMETER	CONDITIONS			
	Well/Piezometer	Properly Capped?	YES	Standing \	Vater or Litter? No Iain	
	B.) GROUNDWAT	ER ELEVATION MEA	SUREMENT (+/	- 0.01 foot, MSL)	•	
	Elevation: Top Depth of Well Equipment Us		Inside Casing	Ground Elevation g Diameter (in in	on 942.55 ches) 2.0"	
	Gro	undwater Level (+/- 0	01 foot below to	p of inner casing	, MSL):	
	·	Date/Time	Depth Groun	to dwater	Groundwater Elevation	
	Before Purging *After Purging *Before Sampling	7/27/06 12:20	12 47 18	20 20		
	C.) WELL PURGI	1G .				
	No.of Well Vo	ater Removed from W lumes (based on curro ped/bailed dry?		10 14 _		
	Equipment us Bailer ty Pump ty If not de	pe //isposable		Dedicated Bailer Dedicated Bailer		
	D.) FIELD MEASU	JREMENT		,		
	Tempera Eq pH Eq Specific Cond	nents (after stabilization ture uipment Used HAC uipment Used HAC uipment Used HAC uipment Used HAC	JFOF JO Units H COMPAN CH COMPAN Units HACH COMP	My POCKE	FAL T FAL	
	Comments				•	
		Laboratory Report and advater monitoring po				e and

		nvironmental MW-30		ermit No ogradient	<u> ජි5-</u>	SDP-	13-91P
Monitoring	Well/Piezometer No.	_	D	owngradier	nt V		
Name of pe	erson sampling	MitchBrown	J				
	A.) MONITORING W	ELL/PIEZOMETER	CONDITIO	NS			
	Well/Piezometer P	roperly Capped?	YES		Standing V f yes, exp	Vater or Litte Ia <u>in</u>	er? No
	B.) GROUNDWATER	R ELEVATION MEA	SUREMENT	Γ (+/- 0.01 1	foot, MSL)	1	
	Elevation: Top o Depth of Well Equipment Used	finner well casing 59 SOLIN	inside Ca	Groun asing Diam	d Elevatio eter (in ind		162
	Grour	ndwater Level (+/- 0	.01 foot below	w top of inr	ner casing	, MSL):	
		Date/Time		epth to roundwatei	r	Groundwa Elevation	ıter
	Before Purging *After Purging *Before Sampling	3/20/06 1:70 3/22/06 12:15		903 5384 1942			-
	C.) WELL PURGING	;		•			
		er Removed from W mes (based on curre ed/bailed dry?		9.7 el) 3			
	Equipment used Bailer type Pump type If not dedic	Disposalla	eaning		ed Bailer ed Bailer	No.	
	D.) FIELD MEASUR	EMENT					
	Temperatur Equip pH Equip Specific Conditi	nts (after stabilization report Used HAC poment Used HAC	CH CON	Inite of Portion of Po	C CKET POCKET S/CM 7 Pox	FAL T PAL	À L
	Comments						
		aboratory Report and water monitoring po					I surface and

Site Name	AMES-STORY	Environmental	LANDFILL	Permit No	<u> ୫</u> 5-	SDP - 13	-91P
Monitoring	Well/Piezometer No	. <u>MW-31</u>		Upgradient			
lame of pe	erson sampling	Mitch Brow	_ لهد			· · · ·	<u> </u>
	A.) MONITORING	WELL/PIEZOMETER	CONDITI	ONS			
	Well/Piezomete If no, explain	r Properly Capped? _	YES		itanding W yes, expl	/ater or Litter?	No
	B.) GROUNDWAT	ER ELEVATION MEA	SUREME	NT (+/- 0.01 f	oot, MSL)		
	Elevation: Top Depth of Well Equipment Us		inside	3 Ground Casing Diame		n 938·2 hes) z·o"	<u> </u>
	Gro	undwater Level (+/- 0	.01 foot be	elow top of inn	er casing,	MSL):	
		Date/Time		Depth to Groundwater		Groundwater Elevation	
<i>:</i>	Before Purging *After Purging *Before Sampling	3/20/02 1:15 3/24/06 11:55	_	2406 2455 270			·
	C.) WELL PURGI	NG					
	No.of Well Vo	ater Removed from W lumes (based on curr ped/bailed dry?	ell (gallon) ent water ا	evel) 3	<u>-</u>		
·	Equipment us Bailer ty Pump ty If not de	pe ();3005a50		Dedicate	ed Bailer ed Bailer		
	D.) FIELD MEASU	JREMENT					
	Tempera Eq pH Eq Specific Cond	nents (after stabilization ture uipment Used HAC	TACH		oc CKET POCKE CM	PAL T PAL XET PA	
	Comments	<u>-</u> ,			· ·		
	NOTE: Attach grour	Laboratory Report an adwater monitoring po	d 8-12" x 1 oints. One	11" site plan sl map per samp	nowing loo	ations of all su	urface and

Site Name AMES-STORY ENVIRONMENTED LANGE	4Permit No. 85-5DP-13-91P					
Monitoring Well/Piezometer No. <u>MW-32</u>	Upgradient					
Name of person sampling Mitch Brown						
A.) MONITORING WELL/PIEZOMETER CONDI	TIONS					
Well/Piezometer Properly Capped? <u>YES</u>	Standing Water or Litter? No If yes, explain					
B.) GROUNDWATER ELEVATION MEASUREM	IENT (+/- 0.01 foot, MSL)					
T	So Ground Elevation 937.39 le Casing Diameter (in inches) 2.0"					
Groundwater Level (+/- 0.01 foot below top of inner casing, MSL):						
Date/Time	Depth to Groundwater Groundwater Elevation					
Before Purging *After Purging *Before Sampling *Before Sampling	35 52 35 52					
C.) WELL PURGING						
Quantity of Water Removed from Well (gallo No.of Well Volumes (based on current wate Was well pumped/bailed dry?	ons) 78 r level) 3					
Equipment used: Bailer type Pump type If not dedicated, method of cleaning	'Dedicated Bailer Wo					
D.) FIELD MEASUREMENT						
Weather Conditions Field Measurments (after stabilization) Temperature Equipment Used PH Equipment Used Specific Conditions Equipment Used Fquipment Used Fquipment Used Fquipment Used Fquipment Used Fquipment Used	Units °C MPANY POCKET PAL COMPANY POCKET PAL Units us/ca Company POCKET PAL					
Comments	,					
	x 11" site plan showing locations of all surface and					
*Omit if only measuring groundwater elevations.	· · · · · · · · · · · · · · · · · · ·					

Site Name	AMES-STORY E	vuironmental	LANDFILL Permit No.	<u> </u>	SDP-13-911	P
Monitoring V	Vell/Piezometer No.	MW-33	Upgradient _			
Name of per	son sampling	Mitch Brown	Downgradie <u>r</u> J	nt /		
	A.) MONITORING W	ELL/PIEZOMETER	CONDITIONS			
	Well/Piezometer P	roperly Capped?		Standing V If yes, expl	Vater or Litter? No ain	<u> </u>
;	B.) GROUNDWATER	RELEVATION MEA	SUREMENT (+/- 0.01	foot, MSL)		
	Elevation: Top of Depth of Well Equipment Used	inner well casing 28 · 2 SOU NST	906·32 Groun Inside Casing Diam		n 904.06 ches) z.o"	_
	Groun	dwater Level (+/- 0.	01 foot below top of inr	ner casing,	MSL):	
		Date/Time	Depth to Groundwater	r	Groundwater Elevation	
	Before Purging *After Purging *Before Sampling	3/22/06 12:30	1007 1219 1012			
	C.) WELL PURGING					
		r Removed from W nes (based on curre d/bailed dry?				
•	Equipment used Bailer type Pump type If not dedic	Disposable	'Dedicat	ed Bailer ed Bailer		
	D.) FIELD MEASURI	EMENT				
	Temperatur Equip pH Equip Specific Condition	nts (after stabilizations ment Used HAC ment Used HAC	Units H COMPANY PO CH COMPANY Units ACH COMPANY	POCKET POCKET J'POCKE	FAL T PAL XET PAL	
	Comments					
			d 8-12" x 11" site plan s ints. One map per samp		cations of all surface an I.	ıd

Site Name	AMES-STORY	Environmental		85-5D	P-13-91P
Monitoring 1	Well/Piezometer No	. <u>MW-34</u>	Upgradient		
Name of pe	erson sampling	. <u>MW-34</u> MitchBrown	Downgradier	11 /	
	A.) MONITORING	WELL/PIEZOMETER			
	Well/Piezomete If no, exp <u>lain</u>	r Properly Capped?		Standing Water fyes, explain	or Litter? No
	B.) GROUNDWAT	ER ELEVATION MEA	SUREMENT (+/- 0.01	foot, MSL)	
	Elevation: Top Depth of Well Equipment Us		Inside Casing Diam	d Elevation C eter (in inch <u>es)</u>	2.0"
	Gro	oundwater Level (+/- 0.	01 foot below top of inr	ner casing, MSL) :
		Date/Time	Depth to Groundwate		undwater ration
	Before Purging *After Purging *Before Sampling	3/20/06 12:00 3/2406 9:35	13 30 6 90		
	C.) WELL PURGI	NG .			
	No.of Well Vo	ater Removed from Welumes (based on current ped/bailed dry?			
	Equipment us Bailer ty Pump ty If not de	pe 115/05454	Dedicar	ed Bailer	اد
	D.) FIELD MEAS	JREMENT			
	Tempera Eq pH Eq Specific Cond	nents (after stabilization ture uipment Used HAC uipment Used HAC ditions 1775	Units	/cm	AL
	Comments	····			
		Laboratory Report and notwater monitoring poi			s of all surface and
	*Omit if only meas	suring groundwater ele	vations.		

Site Name	AMES-STORY	Environmental	LANDFILLPermit	No. <u>85-</u>	SDP-13-91P
Monitoring '	Well/Piezometer No			lient	
Name of pe	rson sampling	Mitch Brow		idulo <u>rii </u>	
	A.) MONITORING	WELL/PIEZOMETER	CONDITIONS		
	Well/Piezomete If no, explain	r Properly Capped?_	YES	Standing V	Vater or Litter? No lain
	B.) GROUNDWAT	TER ELEVATION MEA	ASUREMENT (+/-	0.01 foot, MSL)	
	Elevation: Top Depth of Well Equipment Us		Inside Casing	Ground Elevatio Diameter (in ind	n 914:04 ches) z.o"
	Gro	oundwater Level (+/- 0	.01 foot below top	of inner casing	, MSL):
		Date/Time	Depth t Ground		Groundwater Elevation
	Before Purging *After Purging *Before Sampling	Jedoc 11:45 3/22/02 9:15	13 e 13 e 13 ea	2 7 3	
	C.) WELL PURGI	NG ·			
÷	No.of Well Vo	ater Removed from Wolumes (based on curroped/bailed dry?		2 ² 3	
	Equipment us Bailer ty Pump ty If not de	pe 1/15/25454	'De	edicated Bailer edicated Bailer	N.
	D) FIELD MEAS	JREMENT			
·	Tempera Eq pH Eq Specific Con	ments (after stabilization liture uipment Used HAS uipment Used HAS ditions /589	Units Company Company Units Company Company Units HACH Company	POCKET My FlockE My Flock PANY Flock	TAL TAL XET PAL
	Comments				
		Laboratory Report an			cations of all surface and
	*Omit if only meas	suring groundwater ele	evations.		

Site Name	AMES-STORY	Environmental	LANDFIL	Permit No.	<u> සි5-</u>	SDP-13	3-91P
Monitoring V	Vell/Piezometer No	. MW-36		_Upgradient _			
Name of per	son sampling	MitchBrou	لىرل	Downgradier	<u> [-</u>		
	A.) MONITORING	WELL/PIEZOMETER	CONDIT	IONS			
	Well/Piezomete If no, explain	r Properly Capped?_	YES		Standing W fyes, expl	later or Litter	7 No
	B.) GROUNDWAT	ER ELEVATION MEA	SUREME	ENT (+/- 0.01 f	oot, MSL)		
	Elevation: Top Depth of Well Equipment Us	of inner well casing 53.5 sed Sour ST	Inside	Groun Casing Diam		n 947·3 hes) z·o"	
	Gro	oundwater Level (+/- 0	.01 foot b	elow top of inn	er casing,	MSL):	
	•	Date/Time		Depth to Groundwater	-	Groundwate Elevation	: [
	Before Purging *After Purging *Before Sampling	3/12/06 9:30 3/17/06 12:35		17 <u>45 93</u> <u>35 70</u>			
	C.) WELL PURGI	NG					
	No.of Well Vo	ater Removed from Wolumes (based on currently ped/bailed dry?) <u>=</u>		
	Equipment us Bailer ty Pump ty If not de	pe 1):500545C			ed Bailer ed Bailer	<u>Jo</u>	
	D.) FIELD MEASI	JREMENT					
	Tempera Eq pH Eq Specific Cond	nents (after stabilization ture) uipment Used HAC uipment Used HAC uipment Used HAC ditions	14 H CON	ONFONT Units W	C CVET POCKE	FAL T FAL XET FA	
	Comments						
		Laboratory Report and					urface and

Site Name	AMES-STORY	Environmental	LANDFILL Permit No.	85- SDP-	13-91P
Monitoring '	Well/Piezometer No.		Upgradient Downgradier	<u> </u>	
Name of pe	rson sampling	Mitch Brown		11.	
	A.) MONITORING	WELL/PIEZOMETER	CONDITIONS		
	Well/Piezometer If no, explain	Properly Capped?		Standing Water or Li If yes, expla <u>in</u>	tter? No
•	B.) GROUNDWAT	ER ELEVATION MEA	SUREMENT (+/- 0.01	foot, MSL)	
	Elevation: Top Depth of Well Equipment Us		Inside Casing Diam	nd Elevation 947 eter (in inches) 2	
	Gro	undwater Level (+/- 0	.01 foot below top of inr	ner casing, MSL):	
	•	Date/Time	Depth to Groundwate	Groundy r Elevation	
	Before Purging *After Purging *Before Sampling	3/16/06 950 3/17/06 12:55	925 2405 1061		
	C.) WELL PURGIN	1G			
	No.of Well Vol	ater Removed from Wounes (based on curro ped/bailed dry?) 9	
	Equipment us Bailer typ Pump ty If not dec	pe lisposasle	'Dedicat	ted Bailer	
	D.) FIELD MEASU	IREMENT	•		
	Temperat Equ pH Equ Specific Cond	nents (after stabilization ure / uipment Used HAC	Units H COMPANY CH COMPANY Units HACH COMPAN	POLKET PAL TOLKET PAL 1) CM	-
	Comments		····		
			d 8-12" x 11" site plan s ints. One map per sam		all surface and

Site Name	AMES-STORY	Environmental	LANDFILLE	Permit No	<u> ୫</u> 5-	SDP-	13-91F
Monitoring '	Well/Piezometer No	MW-3		Upgradient		<u> </u>	
Name of pe	erson sampling	Mitch Bro	w~ -	Downgradie <u>n</u>		- 	<u></u>
	A.) MONITORING	WELL/PIEZOMETER	CONDITIO	ONS			
	Well/Piezomete If no, explain	r Properly Capped?_	YES	S If	tanding V yes, expl	Vater or Litt ain	ier? No
	B.) GROUNDWAT	ER ELEVATION ME	SUREMEN	NT (+/- 0.01 fo	oot, MSL)		
	Elevation: Top Depth of Well Equipment Us		Inside (9 Ground Casing Diame	eter (in inc	n <u> 934·</u> ches) Z·c	<u>ಲ್</u> ವ ೨"
	Gro	oundwater Level (+/- 0	.01 foot bel	ow top of inn	er casing,	MSL):	
		Date/Time		Depth to Groundwater		Groundwa Elevation	
•	Before Purging *After Purging *Before Sampling	3/14/06 12:05 3/17/06 1155	- <u>-</u> -	22 ^{QS} 254- 28 !!			
	C.) WELL PURGI	NG					
	No.of Well Vo	ater Removed from Volumes (based on curr nped/bailed dry?	ent water le عراض	vel) /	·		
	Equipment us Bailer ty Pump ty If not de	pe <i>Uisposable</i>			ed Bailer ed Bailer	No	
	D.) FIELD MEASI	JREMENT					
	Tempera Eq pH Eq Specific Cond	nents (after stabilization ture wipment Used HAC BE LUIPMENT Used HAC BE LUIPMENT Used HAC BE LUIPMENT HELD WIPMENT USED HACK BE LUIPMENT HELD WIPMENT HE WIPMENT HELD WIPMENT HE WIPM	CH COMP	Units °C	POCKE	AL TAL	71
	Comments				· ···		
		Laboratory Report an					III surface and

Site Name	AMES-STORY	Environmental	LANDFIL	Permit No.	<u>85- :</u>	5DP - 1	<u>3-91P</u>
Monitoring \	Well/Piezometer No			Upgradient Downgradien	+ -		
Name of pe	rson sampling	Mitch Brown	N	Downgradie <u>ir</u>			
	A.) MONITORING	WELL/PIEZOMETER	CONDIT	IONS			
	Well/Piezomete If no, explain	r Properly Capped?	YES		tanding W yes, expla	ater or Litte	n No
	B.) GROUNDWAT	ER ELEVATION MEA	SUREME	NT (+/- 0.01 fo	oot, MSL)		
	Elevation: Top Depth of Well Equipment Us			93 Ground Casing Diame	d Elevation eter (in inch		.96
	Gro	oundwater Level (+/- 0.	01 foot b	elow top of inn	er casing, I	MSL);	
		Date/Time		Depth to Groundwater		Groundwat Elevation	er
	Before Purging *After Purging *Before Sampling	3/14/06 12:25 3/17/06 12:05		2012 24 40 2050			- - -
	C.) WELL PURGI	NG					
	No.of Well Vo	later Removed from Wilumes (based on current ped/bailed dry?	ell (gallon ent water No	s) 5 level) 3			
	Equipment us Bailer ty Pump ty If not de	بالمعدم وز (pe	aning	'Dedicate		_ <i>JJ</i> 0	
	D.) FIELD MEASU	JREMENT				•	
	Tempera Eq pH Eq Specific Cond	nents (after stabilization ture uipment Used HAC SZ uipment Used HAC SZ Uipment Used HAC SZ Uipment Used HAC SZ Uipment Used HAC HAC UIPMENT HAC HAC HAC UIPMENT H	16 H CON CH C	_Units °C_	POCKET FOCKET FOCKET	FAL FAL KET P	H
	Comments						
٠	NOTE: Attach groui	Laboratory Report and advater monitoring point	d 8-12" x ints. One	11" site plan sl map per samp	nowing loca ling round.	ations of all	surface and

Site Name 💆	AMES-STORY E	invironmental	LANDFIL	Permit No	85-	SDP-1	3-91P
Monitoring W	/ell/Piezometer No.	MW-40		Upgradient _		-	
Name of pers	son sampling	Mitch Bro	WN	Downgradier	nt v		<u>:</u>
A	A.) MONITORING V	VELL/PIEZOMETER	CONDIT	IONS			
	Well/Piezometer I If no, explain	Properly Capped?_	YES		Standing V f yes, expla	/ater or Litter ain	7 No
B	B.) GROUNDWATE	R ELEVATION MEA	SUREME	NT (+/- 0.01 f	foot, MSL)		
	Elevation: Top of Depth of Well Equipment Use		933 c Inside	7 Groun Casing Diam	d Elevation eter (in inc	931·1 hes) z·o	1
	Grou	ndwater Level (+/- 0	.01 foot be	elow top of inr	ner casing,	MSL):	
		Date/Time		Depth to Groundwater	r	Groundwat Elevation	e r
•	Before Purging 'After Purging 'Before Sampling	3/12/06 8:50 3/17/06 12:20		80 <u>c</u> 15 <u>99</u> 82 <u>e</u>			- - -
C	C.) WELL PURGING	3					
	No.of Well Volu	ter Removed from Williams (based on curred) ed/bailed dry?		level) 3	L ·		
	Equipment use Bailer typ Pump typ If not ded	e Disposible		_	ed Bailer ed Bailer	No	
(D.) FIELD MEASUF	REMENT					
	Temperatu Equi pH Equi Specific Condil	ents (after stabilization ire pment Used HAC pment Used HAC	10 H CON	Units	<u></u>	PAL T PAL	
	Comments						
		aboratory Report an Iwater monitoring po					surface and

Site Name	AMES-STORY E	vuronmental	LANDFILL Permit No.	<u> ୫</u> 5-	SDP - 13	-91P
Monitoring	Well/Piezometer No.	MW-41	Upgradient			
		h/ (0	Downgradie	nt /		
name of pe	erson sampling	Mitch Brow	\sim			
	A.) MONITORING WE	ELL/PIEZOMETER	CONDITIONS			
	Well/Piezometer Pr If no, explain	operly Capped?	YES	Standing V If yes, expl	Vater or Litter?) ain	<u>Vo</u>
	B.) GROUNDWATER	ELEVATION MEAS	SUREMENT (+/- 0.01	foot, MSL)		
	Elevation: Top of Depth of Well Equipment Used	inner well casing 6 45.58 SOUNST	733 · 46 Grour Inside Casing Diam	nd Elevation neter (in inc	n 931.44 ches) 2.0"	
	Ground	dwater Level (+/- 0.0	01 foot below top of in	ner casing,	MSL):	
		Date/Time	Depth to Groundwate	r	Groundwater Elevation	
	Before Purging *After Purging *Before Sampling	3/17/06 9:00	17 ³¹ 34.10 2612			
	C.) WELL PURGING					
		r Removed from We les (based on curre d/bailed dry?		0 23		-
	Equipment used: Bailer type Pump type If not dedic	1)15005166	'Dedicat	ted Bailer ted Bailer	No	
	D.) FIELD MEASURE	MENT				
	Temperature Equipi pH Equipi Specific Conditio	ts (after stabilization to the	Units 2	POCKET FOCKE Y POCKE	FAL T PAL XET PAL	
	Comments					
	NOTE: Attach Lat	oratory Report and	8-12" x 11" site plan s	showing loc	ations of all surf	ace and

NOTE: Attach Laboratory Report and 8-12" x 11" site plan showing locations of all surface and groundwater monitoring points. One map per sampling round.

Bite Name AMES Monitoring Well/Pie				ermit No pgradient	85-	SDP-	13-91F
lame of person sa	mpling	MW-42 Mitch Brow	γν D	owngradie <u>r</u>	it V		
A.) MC	NITORING WE	ELL/PIEZOMETER	CONDITIO	NS			
	l/Piezometer Pr o, explain	operly Capped?	YES		Standing V fyes, expl	Vater or Litt a <u>in</u>	er? No
B.) GR	OUNDWATER	ELEVATION MEA	SUREMEN	T (+/- 0.01 f	oot, MSL)		
De	evation: Top of epth of Well quipment Used	inner well casing 46.37. 50UNS	Inside C	Groun asing Diam	d Elevation eter (in inc		
	Ground	dwater Level (+/- 0.	01 foot belo	w top of inn	er casing,	MSL):	
. •		Date/Time		epth to roundwater		Groundwa Elevation	
*After F	Purging Purging Sampling	3/20/06 1:50 3/22/06 12:30	,	2132 3815 2370		<u> </u>	
C.) W	ELL PURGING						
N		Removed from W les (based on curre d/bailed dry?			10		
E.	quipment used: Bailer type Pump type If not dedica	Nisposally ated, method of cle	eaning		ed Bailer ed Bailer	<u>Ns</u>	
D.) FI	ELD MEASURE	MENT					
Fi	Temperature Equipr pH Equipr pecific Conditio	ts (after stabilization) ment Used HAC		Inits Any Po Apany Inits	POCKET FOCKE S/CM	FAL T FAL XET F	\
Comn	nents						
NO		oratory Report and ater monitoring poi					ll surface and

Site Name	AMES-STORY	Environmental	LANDFILL Permit No.	85-5DP-	13-91P
Monitoring	Well/Piezometer No		Downgradie		
Name of pe	erson sampling	Mitch Brow	Jowngradio .	114	
	A.) MONITORING	WELL/PIEZOMETER	CONDITIONS	•	
	Well/Piezomete If no, explain	r Properly Capped?	YES	Standing Water or Lit If yes, expla <u>in</u>	iter? No
	B.) GROUNDWAT	ER ELEVATION MEA	SUREMENT (+/- 0.01	foot, MSL)	
	Elevation: Top Depth of Well Equipment Us	28.13		nd Elevation 938 neter (in inches) 2	(ez
	Gro	oundwater Level (+/- 0.	01 foot below top of in	ner casing, MSL):	
		Date/Time	Depth to Groundwate	Groundw Elevation	
	Before Purging *After Purging *Before Sampling	3/20/06 2:10 3/22/06 12:40	1912 2636 1946		<u> </u>
	C.) WELL PURGI	NG			
	No.of Well Vo	ater Removed from W lumes (based on curre ped/bailed dry?	eli (galions)	<u>S</u>	
	Equipment us Bailer ty Pump ty If not de	pe //17/05/25/4	Dedica	ted Bailer	
	D.) FIELD MEASU	JREMENT			
	Tempera Eq pH Eq Specific Cond	nents (after stabilization ture) uipment Used	3 Units "	POCKET PAL POCKET PAL SYCH	AL
	Comments				
			18-12" x 11" site plan s nts. One map per sam		all surface and

Site Name AMES-STORY ENV	ronmental LAN	Permit No.	85-5DP.	-13-916
Monitoring Well/Piezometer No.	5W-1	Date/Time	3/22/06	1:15
Name of person sampling	Mitch Bro	ســـــ لملم		
A.) TYPE OF MONITORING	POINT			
Stream Road Ditch Drainage Ditch		n Tile with Riser		
B.) PURPOSE OF MONITOR	ING POINT			
Upstream Within Landfill	Down	nstream		
C.) MONITORING POINT CO	NDITIONS			
General description/con	dition of monitoring	point		
Was monitoring point di Was water flowing?	Mrcs If yes	Too little wa s, estimate quantity s, estimate depth	ter to sample?	No
Was water discolored? Does water have odor? Was ground discolored Litter present?	No.	If yes, desci If yes, desci If yes, desci If yes, desci	be below. be below.	
Comments	· .			· 1
D.) FIELD MEASUREMENT				
Weather Conditions	Cloud	, 40'F		
Field Measurments (a Temperature Equipment L pH Equipment U Specific Conditions Equipment U	sed HACH COM Sed HACH COM	Units of Pany Pocker Units as upany Pocker	PAL CAL T PAL	
Comments				

lite Name AMES-Story ENV	MONMENTAL LANDE	<u>ய</u> Permit No	85-5DP-	13-910
Monitoring Well/Piezometer No.	SW-Z	Date/Time _	3/22/06	136
lame of person sampling	Motel Brown			
A.) TYPE OF MONITORING	POINT			
Stream Road Ditch Drainage Ditch	Open Ti Tile with Other			
B.) PURPOSE OF MONITOR	ING POINT			
Upstream Within Landfill	Downstr	ream		
C.) MONITORING POINT CO	NDITIONS			•
General description/con	dition of monitoring poli	nt		
Was monitoring point dr Was water flowing?	Yes If yes, e	Too little wal stimate quantity_ stimate depth		No
Was water discolored? Does water have odor? Was ground discolored Litter present?		If yes, descil If yes, descil If yes, descil	oe below. oe below.	
Comments			····· ···	
D.) FIELD MEASUREMENT				
Weather Conditions	Claud,	40°F		
Field Measurments (af Temperature Equipment U pH Equipment U Specific Conditions Equipment U	sed HACH COMPAI SED HACH COMPAI 3575	Units 'C LY POCKET WY POCKET Units MIN	PAL PAL On PAL	
Comments				,

Site Name AMES-STORY ENV	Ironmental Land	PEILL Permit No.	85-SDP-	13-916
Monitoring Well/Piezometer No.	5W-3	Date/Time_	= 3/20/a	
Name of person sampling	Mitch Brown	<i></i>		
A.) TYPE OF MONITORING	,			
Stream Road Ditch Drainage Ditch	Other	rith Riser		
B.) PURPOSE OF MONITOR		_		
Upstream Within Landfill	Down Other	stream /		
C.) MONITORING POINT CO	NDITIONS			
General description/con	dition of monitoring p			
Was monitoring point di Was water flowing?	y? 765 Nat If yes If yes	Too little war , estimate quantity , estimate depth	ter to sampl <u>e?</u>	Tis
Was water discolored? Does water have odor? Was ground discolored Litter present?	2	If yes, desci	be below. be below.	
Comments				
D.) FIELD MEASUREMENT				
Weather Conditions	Cloud), 40°F		
рН	sed HACH COMF	•	PAL PAL T PAL	
Comments				11 mm mm p m, 1 mm mm m m m m

Site Name AMES-STORY ENVI	FORMENTAL LANDE	ய_ Permit No	85-SDP-	13-910
Monitoring Well/Piezometer No.	sw-4	Date/Time _	3/22/06	1:45
Name of person sampling	Mtch Brown	/		
A.) TYPE OF MONITORING F	POINT			
Stream Road Ditch Drainage Ditch	Open Ti Tile with Other			
B.) PURPOSE OF MONITOR	ING POINT			
Upstream Within Landfill	Downstr Other	ream		
C.) MONITORING POINT CO	NDITIONS			
General description/con	dition of monitoring poi	nt		
Was monitoring point dr Was water flowing?	yes, e	Too little wat stimate quantity stimate depth	er to sample?	ىلە
Was water discolored? Does water have odor? Was ground discolored? Litter present?	Уе5 N3 N0 N.	If yes, descib	e below. e below.	
Comments	Murky weter			
D.) FIELD MEASUREMENT				
Weather Conditions	Cloud,	40°F		
Field Measurments (af Temperature Equipment U pH Equipment U Specific Conditions Equipment U	sed HACH COMPA sed HACH COMP	Units C MY POCKET MY POCKET Units MS MY POCKET	PAL CADAL	
Comments				=

Site Name AMES-STORY ENV	FORMENTAL LANDEIL	L Permit No	85-SDP-13-91P
Nonitoring Well/Piezometer No.	5W-5	Date/Time _	3/20/06
lame of person sampling	Mitch Brown		
A.) TYPE OF MONITORING	POINT		
Stream Road Ditch Drainage Ditch	Open Tile Tile with F		
B.) PURPOSE OF MONITOR	ING POINT		
Upstream Within Landfill	Downstre Other	eam 🗸	
C.) MONITORING POINT CO	NDITIONS		
General description/con	dition of monitoring point		
Was monitoring point dr Was water flowing?	ir yes, esi ا	Too little wat timate quantity timate depth	er to sample? Yus
Was water discolored? Does water have odor? Was ground discolored' Litter present?	2	If yes, descit If yes, descit If yes, descit If yes, descit	pe below.
Comments			
D.) FIELD MEASUREMENT			
Weather Conditions	Cloud,	40°F	
Field Measurments (af Temperature Equipment U pH Equipment U Specific Conditions Equipment U	sed HACH COMPAN	Units Y. FOCKET MY FOCKET Units MY POCKET	PAL
Comments			

AMES-STORY ENVIRONMENTAL LANDFILL 85-SDP-13-91P MONITORING WELL SAMPLING RESULTS

NORTH TRENCHES

		SAMPLING	DATE:	September 2	22, 2006												
	ACTION	U.G.W	U.G.W	U.A.W	U.A.W	D.G.W	D.G.W	D.G.W	D.G.W	D.A.W	D.A.W	BOTH	вотн	вотн	SURFACE N	MONITORIN	G PTS.
PARAMETER	LEVEL	MW 22	MW 28	MW 27	MW 29	MW 23	MW 24	MW 26	MW 31	MW 30	MW 32	MW 25	MW 33	MW 34	SW 1	SW 2	SW3
ug/L																	
Benzene *	5	Plugged	NT	Plugged	NT	NT	DRY	Plugged	NT	NT NT	NT_	NT_	NT	NT	NT	NT	dry
Carbon tetrachloride *	5	Plugged	NT	Plugged	NT	NT	DRY	Plugged	NT_	NT	NT	NT	NT	NT	NT	NT	dry
1,4-Dichlorobenzene *	75	Plugged	NT	Plugged	NT	NT	DRY	Plugged	NT	NT	NT	NT	NT	NT	NT	NT	. dry
1,2-Dichloroethane *	5	Plugged	NT	Plugged	NT	NT	DRY	Plugged	NT	NT	NT	NT	NT	NT	NT	NT	dry
1,1-Dichloroethene *	7	Plugged	NT_	Plugged	NT	NT	DRY	Plugged	NT	NT	NT	NT	NT	NT	NT	NT	dry
1,1,1-Trichloroethane *	200	Plugged	NT	Plugged	NT	NT	DRY	Plugged	NT	NT	NT	NT	NT	NT	NT	NT	dry
Trichloroethene *	5	Plugged	NT	Plugged	NT	NT	DRY	Plugged	NT	NT	NT	NT	NT	NT	NT	NT	dry
mg/L																	
Arsenic, dissolved	0.05	Plugged	NT	Plugged	NT	NT	DRY	Plugged	NT	NT	Ŋ	NT	NT	NT	NT	NT	dry
Barium, dissolved	2.0	Plugged	NT	Plugged	NT	NT	DRY	Plugged	NT	NT	NT	NT	NT	NT	NT	NT	dry
Cadmium, dissolved	0.005	Plugged	NT	Plugged	NT	NT	DRY	Plugged	NT	NT	NT	NT	NT	NT	NT	NT	dry
Chromium, dissolved	0.1	Plugged	NT	Plugged	NT	NT	DRY	Plugged	NT	NT	N	NT	NT ·	NT	NT	NT	dry
Lead, dissolved	0.015	Plugged	NT	Plugged	NT	NT	DRY	Plugged	NT	NT	NT	NT	NT	NT	NT	NT	dry
Mercury, dissolved	0.002	Plugged	NT	Plugged	NT	NT	DRY	Plugged	NT	NT	NT	NT	NT	NT	NT	NT	dry
Magnesium, dissolved		Plugged	NT	Plugged	NT	NT	DRY	Plugged	NT	NT	NT	NT	NT	NT	NT	NT	dry
Zinc, dissolved	2	Plugged	NT	Plugged	NT	NT	DRY	Plugged	NT _	NT	<u>N</u>	NT	NT	NT	NT	NT	dry
Iron, dissolved		Plugged	<0.030	Plugged	0.096	<0.030	DRY	Plugged	0.041	0.246	0.044	0.048	3.83	0.074	<0.030	<0.030	dry
Copper, dissolved	1.3	Plugged	NT	Plugged	NT	NT	DRY	Plugged	NT	NT	NT	NT.	NT	NT	NT	NT	dry
Chloride	-	Plugged	100	Plugged	<10	24	DRY	Plugged	31	<10	17	288	44	<10	110	110	dry
Nitrogen, Ammonia	_	Plugged	<1.0	Plugged	<1.0	<1.0	DRY	Plugged	<1.0	<1.0	<1.0	<1.0	1.8	<1.0	<1.0	<1.0	dry
Chemical Oxygen Demand	_	Plugged	10	Plugged	<10	13	DRY	Plugged	20	11	11	12	24	53	11	<10	dry
Total Organic Halogens		Plugged	0.016	Plugged	0.035	0.047	DRY	Plugged	0.06	0.039	0.035	0.036	0.032	0.056	<0.010	0.031	dry
Phenois	_	Plugged	<0.100	Plugged	<0.100	<0.100	DRY	Plugged	<0.100	<0.100	<0.100	<0.100	<0.100	<0.100	<0.100	<0.100	dry
pΗ		Plugged	8	Plugged	8.4	7.6	DRY	Plugged	7.9	8	8.1	7.8	7.9	7.7	8.1	8.1	dry
Temperature, celsius	-	Plugged	24	Plugged	21	16	DRY	Plugged	14	15	14	16	16	21	19	18	dry
Conductivity, mv		Plugged	1275	Plugged	670	1385	DRY	Plugged	1894	873	1195	1785	1225	1495	913	946	dry
				U.A.W - Upg	radient aquif	er well											

NT - Not tested

D.G.W. - Downgradient groundwater well

D.A.W. - Downgradient aquifer well

U.G.W - Upgradient groundwater well

SOUTH TRENCHES

AMES-STORY ENVIRONMENTAL LANDFILL 85-SDP-13-91P MONITORING WELL SAMPLING RESULTS

1415	ζυp	Кир	1121	788	649	Z901	1274	1064	999	989	1281	1374	089	7601	TN	TN	_	Conductivity, mv
۷١	Кıр	λιр	91	91	50	50	۷١	۷١	24	81	22		23	18	TN	TN		Temperature, celsius
2.8	φ	Кiр	8	6.8	£.8	8.7	1.8	4.8	4.8	€.8	T.T	T.T	1.8	8.7	TN	TN	_	Hq
001.0>	Кıр	/Lip	001.0>	001.0>	001.0>	001.0>	<0.100	001.0>	001.0>	001.0>	001.0>	001.0>	001.0>	001.0>	TN	TN	_	Phenols
Z90.0	Ацр	Кıр	660.0	990.0	20.0	010.0>	690.0	810.0	960.0	60.0	920.0	410.0	20.0	910.0	TN	TN	-	Total Organic Halogens
11	ζup	qıλ	13	11	10	01>	01>	10	<١٥	01>	01>	01>	01>	10	TN	TN		Chemical Oxygen Demand
0.1>	φ	Кıр	0.1>	0.1>	01>	0.1>	0.1>	0.1>	1.2	0.1>	0.1>	0.1>	0.1>	0.1>	TN	TN	-	Mitrogen, Ammonia
t /6	ξip	Кıр	L S	61	01>	91	24	31	01>	13	18	13	0l>	142	IN	1N	_	Chloride
TN	Αup	Кıр	TN	TN	IN	TN	IN	TN	ΙN	IN	TN	TN	TN	IN	TN	IN	£.1	Copper, dissolved
TT.8	λup	Дíр	60.03	2.01	1.82	0.132	361.0	690'0	96°₽	44.1	050.0>	97.9	660.0	<0.030	TN	TN		Iron, dissolved
IN	Αυp	Кıр	TN	LN	TN	TN	IN	TN	TN	TN	TN	TN	IN	TN	TN	TN	Z	Zinc, dissolved
TN	Кıр	quÀ	TN	IN	TN	TN	IN	TN	TN	TN	TN	TN	IN	IN	TN	TN	-	Magnesium, dissolved
IN	Αυp	qıλ	TN	LΝ	TN	1N	TN	TN	TN	IN	TN	IN	LN	IN	IN	TN	200.0	Mercury, dissolved
TN	Кıр	qu	TN	TN	TN	TN	TN	TN	TN	IN	TN	TN	IN	TN	LN	LN	0.015	Lead, dissolved
IN	Λip	Кир	TN	TN	TN	IN	TN	1N	TN	IN	TN	TN	IN	TN	TN	IN	1.0	Chromium, dissolved
TN	quÀ	Кıр	TN	IN	TN	ΙN	ΔN	TN	TN	IN	TN	TN	TN	TN	TN	IN	500.0	Cadmium, dissolved
TN	Кıр	Дup	TN	ΤN	TN	TN	TN	TN	ΤN	TN	TN	TN	TN	TN	TN	LN	2.0	Barium, dissolved
TN	Αip	ζúρ	TN	ΙN	IN	TN	ΔN	IN	IN	IN	IN	LN	TN	TN	ΤN	IN	50.0	Arsenic, dissolved
																		у/бш
TN	Αup	Αίρ	TN	TN	TN	ΤN	TN	TN	TN	TN	TN	ΤN	TN	TN	TN	TN	S	Trichloroethene *
IN	Αίρ	Αιρ	IN	TN	IN	TN	LN	200	1,1,1-Trichloroethane *									
TN	Αip	quÀ	IN	TN	IN	TN	ΙN	TN	TN	LN	TN	TN	TN	IN	TN	TN	L	1,1-Dichloroethene *
TN	ζιp	quÀ	TN	IN	TN	TN	1N	IN	1N	IN	TN	TN	TN	TN	IN	TN	S	1,2-Dichloroethane *
IN	quì	Áір	TN	IN	IN	IN	LN	IN	TN	IN	IN	IN	IN	IN	IN	TN	92	1,4-Dichlorobenzene *
TN	dη	Кир	TN	TN	TN	TN	ΙN	1N	TN	TN	IN	TN	IN	TN	TN	TN	g	Carbon tetrachloride *
TN	qu	Кup	TN	TN	1N	TN	TN	TN	ΙN	TN	TN	TN	IN	IN	Ļ>	IN	S	Benzene *
																		7/6n
9 MS	S MS	⊅ MS	MW 43	WW 42	ID MW	04 WW	65 WM	85 WM	8 WM	7 WM	9 MW	75WM	9E MW	98 WM	PIRT	FIELD	LEVEL	ABTBMARAR
ST9 5	NONITORIN	SURFACE	D.G.W	W.A.d	W.A.Q	D.G.W	D.G.W	W.A.d	W.A.d	W.A.G	D.G.W	N.G.W	W.A.U	HTO8			ACTION	
													9002 '2	September 2	:3TAC	SAMPLING		

Accreditations: Iowa DNR: 095 New Jersey DEP: IA001 Kansas DHE: E-10287

ANALYTICAL REPORT

October 23, 2006

Work Order: 16I1081

Page 1 of 3

Report To

Todd Whipple

Fox Engineering Associates, Inc. 1601 Golden Aspen Drive, Suite 103

Ames, IA 50010

Work Order Information

Date Received: 09/25/2006 10:10AM

Collector: Mitch Brown Phone: 515-233-0000

PO Number:

Project: Ames-Story Environmental Landfill

Project Number: [none]

Analyte	Result	MRL	Method	Analyst Analyzed C	ualifier
16I1081-01 MW-33			Matrix: Water	Collected: 09/22/06	09:00
Determination of Conventional Chemi.	stry Parameters				
Total Organic Halogens (TOX)	0.032 mg/l	0.010	EPA 9020	RSW 10/09/06 0:00	
Chemical Oxygen Demand	24 mg/l	10	EPA 410.4	SAA 09/26/06 13:35	
Chloride	44 mg/l	10	EPA 9252	SAA 09/26/06 15:51	
Nitrogen, Ammonia	1.8 mg/l	1.0	SM 4500-NH3 F	SAA 09/26/06 11:33	
Phenols, total	<0.100 mg/l	0.100	EPA 9065	KRV 09/27/06 15:56	
Determination of Dissolved Metals					,
Iron, dissolved	3.83 mg/l	0.030	EPA 6010B	LAR 09/26/06 11:46	
16I1081-02 MW-25			Matrix:Water	Collected: 09/22/06	09:15
Determination of Conventional Chemi					
Total Organic Halogens (TOX)	0.036 mg/l	0.010	EPA 9020	RSW 10/09/06 0:00	
Chemical Oxygen Demand	12 mg/l	10	EPA 410.4	SAA 09/26/06 13:35	
Chloride	288 mg/l	50	EPA 9252	SAA 09/26/06 15:51	
Nitrogen, Ammonia	<1.0 mg/l	1.0	SM 4500-NH3 F	SAA 09/26/06 11:33	
Phenols, total	<0.100 mg/l	0.100	EPA 9065	KRV 09/27/06 15:56	
Determination of Dissolved Metals					
Iron, dissolved	0.048 mg/l	0.030	EPA 6010B	LAR 09/26/06 11:51	
16I1081-03 MW-32			Matrix: Water	Collected: 09/22/06	09:30
Determination of Conventional Chemi	istry Parameters				
Total Organic Halogens (TOX)	0.035 mg/l	0.010	EPA 9020	RSW 10/09/06 0:00	• • • • • • • • • • • • • • • • • • • •
Chemical Oxygen Demand	11 mg/l	10	EPA 410.4	SAA 09/26/06 13:35	
Chloride	17 mg/l	10	EPA 9252	SAA 09/26/06 15:51	
Nitrogen, Ammonia	<1.0 mg/l	1.0	SM 4500-NH3 F	SAA 09/26/06 11:33	
Phenols, total	<0.100 mg/l	0.100	EPA 9065	KRV 09/27/06 15:56	
Determination of Dissolved Metals					
Iron, dissolved	0.044 mg/l	0.030	EPA 6010B	LAR 09/26/06 11:55	
16I1081-04 MW-31			Matrix: Water	Collected: 09/22/06	5 09;45

Fox Engineering Associates, Inc. 1601 Golden Aspen Drive, Suite 103 Ames, IA 50010

Work Order: 16I1081

October 23, 2006

Page 2 of 3

Analyte	Re	sult	MRL	Method	Analys	t Analyzed Qualifier
16I1081-04 MW-31			•	Matrix:Water		Collected: 09/22/06 09:45
Determination of Conventional Chemi	istry Parame	eters				
Total Organic Halogens (TOX)	0.060		0.010	EPA 9020	RSW	10/09/06 0:00
Chemical Oxygen Demand	20	mg/l	10	EPA 410.4	SAA	09/26/06 13:35
Chloride	31	mg/l	10	EPA 9252	SAA	09/26/06 15:51
Nitrogen, Ammonia	<1.0	mg/l	1.0	SM 4500-NH3 F	SAA	09/26/06 11:33
Phenols, total	< 0.100	mg/l	0.100	EPA 9065	KRV	09/27/06 15:56
Determination of Dissolved Metals						
Iron, dissolved	0.041	mg/l	0.030	EPA 6010B	LAR	09/26/06 11:59
16I1081-05 MW-30	,			Matrix: Water		Collected: 09/22/06 10:00
Determination of Conventional Chem.	istry Parame	eters				
Total Organic Halogens (TOX)	0.039	mg/l	0.010	EPA 9020	RSW	10/09/06 0:00
Chemical Oxygen Demand	11	mg/l	10	EPA 410.4	SAA	09/26/06 13:35
Chloride	<10	mg/l	10	EPA 9252	SAA	09/26/06 15:51
Nitrogen, Ammonia	<1.0	mg/l	1.0	SM 4500-NH3 F	SAA	09/26/06 11:33
Phenols, total	< 0.100	mg/l	0.100	EPA 9065	KRV	09/27/06 15:56
Determination of Dissolved Metals		٠				
Iron, dissolved	0.246	mg/l	0.030	EPA 6010B	LAR	09/26/06 12:12
16I1081-06 MW-23	,	\		Matrix:Water		Collected: 09/22/06 10:10
Determination of Conventional Chem	istry Parame	eters				
Total Organic Halogens (TOX)	0.047		0.010	EPA 9020	RSW	10/09/06 0:00
Chemical Oxygen Demand	13	mg/l	10	EPA 410.4	SAA	09/26/06 13:35
Chloride	24	mg/l	10	EPA 9252	SAA	09/26/06 15:51
Nitrogen, Ammonia	<1.0	mg/l	1.0	SM 4500-NH3 F	SAA	09/26/06 11:33
Phenols, total	< 0.100	mg/l	0.100	EPA 9065	KRV	09/27/06 15:56
Determination of Dissolved Metals						
Iron, dissolved	< 0.030	mg/l	0.030	EPA 6010B	LAR	09/26/06 12:16
16I1081-07 MW-42			,	Matrix:Water		Collected: 09/22/06 10:30
Determination of Conventional Chem	istry Parame	eters				
Total Organic Halogens (TOX)	0.056	mg/l	0.010	EPA 9020	RSW	10/09/06 0:00
Chemical Oxygen Demand		mg/l	10	EPA 410.4	SAA	09/26/06 13:35
Chloride	19	mg/l	10	EPA 9252	SAA	09/26/06 15:51
Nitrogen, Ammonia		mg/l	1.0	SM 4500-NH3 F	SAA	09/26/06 11:33
Phenols, total	< 0.100	-	0.100	EPA 9065	KRV	09/27/06 15:56
Determination of Dissolved Metals				•		
Iron, dissolved	2.01	mg/l	0.030	EPA 6010B	LAR	09/26/06 12:20

Fox Engineering Associates, Inc. 1601 Golden Aspen Drive, Suite 103 Ames, IA 50010

Work Order: 16I1081

October 23, 2006

Page 3 of 3

Analyte	Re:	sult	MRL	Method	Analyst	Analyzed	Qualifier
16I1081-08 MW-43			:	Matrix:Water		Collected: 09/2	2/06 10:40
Determination of Conventional Chem	istry Parame	ters				٠	
Total Organic Halogens (TOX)	0.093	mg/l	0.010	EPA 9020	RSW	10/09/06 0:0	0
Chemical Oxygen Demand	13	mg/l	10	EPA 410.4	SAA	09/26/06 13:3	35
Chloride	57	mg/l	10	EPA 9252	SAA	09/26/06 15::	51
Nitrogen, Ammonia	<1.0	mg/l	1.0	SM 4500-NH3 F	SAA	09/26/06 11:3	33
Phenols, total	< 0.100	mg/l	0.100	EPA 9065	KRV	09/27/06 15::	56
Determination of Dissolved Metals							
Iron, dissolved	0.030	mg/l	0.030	EPA 6010B	LAR	09/26/06 12:2	24

End of Report

Deffey King

Keystone Laboratories, Inc. Jeffrey King, Ph.D.

Laboratory Director

Newton, IA 50208
Phone: 641-792-8451
Fax: 641-792-7989

☐ 3012 Ansborough Ave.
Waterloo, IA 50701
Phone: 319-235-4440
Fax: 319-235-2480
www.kevstonelabs.com

☐ 1304 Adams
Kansas City, KS 66103
Phone: 913-321-7856
Fax: 913-321-7937

PAGE__(__OF___

	www.neystottelabs.com	
PRINT OR TYPE INFORMATION BELOW)	REPORT TO:	BILL TO: M 13'th a Feli
SAMPLER: IVI TON 17 1000	NAME:	NAME: VIII. CONTROLLED
SITE NAME: Ames - Stor Environmental Cardill	COMPANY NAME: 10x Kyroland	COMPANY NAME:
1,000	ADDRESS:	ADDRESS: KOIDOX /485
ADDRESS: 200 Link	CITY/ST/ZIP: /pmis, FH SOO10	CITY/ST/ZIP: Thw S, HT X010
CITY/ST/ZIP:	PHONE: (S/S) 290-9004 (M,fcx)	PHONE:
PHONE	FAX	Keystone Quote No.:
		(If Applicable)

		Time	~.0	Time		
Remarks: Meths saylve have been dill afficient	Remarks: Mchls	rs herc	Received for Lab by: (Signature)	Date	r: (Signature)	Relinquished by: (Signature)
Contact Lab Prior to Submission				Time 7:45	Ma	Mita
Rush	Turn-Around:	Date	Received by: (Signature)	Date 9/25/06	r: (Sigpature)	Relinquished by: (Signature)
)	
		コススト	MW 73 S	10:40	43 9/22	Mu
		T S S X	MD 42 5	10:30	42 8/22	MJ.
90		2000	Mh) 25 5	15:10	23 /1/22	MW.
		し こ マ メ オ	MW 30 5	10.00	130 9/2	MIM
40		とらくと	MW3/ S	9:45	1 9/22	MW3
03		ロのメタ	MN32 5	4.2	32 9/2	M12
02		X+OC Z	M125 S	2.18	5/22	2 CMM
		アンコス	MW 33 S	500	3 9/27	MU 33
SAMPLE TEMPERATURE. UPON RECEIPT: °C SAMPLE CONDITION/COMMENTS		MATRIX GRAB/COMPOS C	SAMPLE LOCATION CONTA	TIME	DATE	CLIENT SAMPLE NUMBER
LABORATORY WORK ORDER NO.	ANALYSES REQUIRED	SITE	INERS			

FORM: CCR 7-

Accreditations: Iowa DNR: 095 New Jersey DEP: IA001 Kansas DHE: E-10287

ANALYTICAL REPORT

October 10, 2006

Work Order: 16I0976

Page 1 of 4

Report To

Todd Whipple

Fox Engineering Associates, Inc. 1601 Golden Aspen Drive, Suite 103

Ames, IA 50010

Work Order Information:

Date Received: 09/21/2006 10:50AM

Collector: Brown, Mitch Phone: 515-233-0000

PO Number:

Project: Ames-Story Environmental SLF

Project Number: [none]

Analyte	Re	esult	MRL	Method	Analys	st Analyzed Qualifier	
1610976-01 MW-38				Matrix: Water		Collected: 09/20/06 10:30	
Determination of Conventional Chemist	ry Param	eters					
Total Organic Halogens (TOX)	0.018	mg/l	0.010	EPA 9020	RSW	10/06/06 0:00	
Chemical Oxygen Demand	10	mg/l	10	EPA 410.4	RVV	09/25/06 11:50	
Chloride		mg/l	10	EPA 9252	RFM	09/22/06 13:31	
Nitrogen, Ammonia	<1.0	mg/l	1.0	SM 4500-NH3 F	LKM	09/22/06 8:00	
Phenols, total	< 0.100	mg/l	0.100	EPA 9065	SAA	09/23/06 11:00	
Determination of Dissolved Metals							.1
Iron, dissolved	0.059	mg/l	0.030	EPA 6010B	LAR	09/22/06 15:44	. :
16I0976-02 MW-39				Matrix:Water	 	Collected: 09/20/06 10:45	[4]
Determination of Conventional Chemist	ry Param	eters				•	
Total Organic Halogens (TOX)	0.063	mg/l	0.010	EPA 9020	RSW	10/06/06 0:00	
Chemical Oxygen Demand	<10	mg/l	10	EPA 410.4	RVV	09/25/06 11:50	
Chloride	24	mg/i	10	EPA 9252	RFM	09/22/06 13:31	
Nitrogen, Ammonia	<1.0	mg/l	1.0	SM 4500-NH3 F	LKM	09/22/06 8:00	
Phenols, total	< 0.100	mg/l	0.100	EPA 9065	SAA	09/23/06 11:00	
Determination of Dissolved Metals							
Iron, dissolved	0.135	mg/l	0.030	EPA 6010B	LAR	09/22/06 15:49	
16I0976-03 MW-41				Matrix:Water		Collected: 09/20/06 12:20	
Determination of Conventional Chemist	ry Param	eters					
Total Organic Halogens (TOX)	0.050	mg/l	0.010	EPA 9020	RSW	10/06/06 0:00	
Chemical Oxygen Demand	10	mg/l	10	EPA 410.4	RVV	09/25/06 11:50	
Chloride	<10	mg/l	10	EPA 9252	RFM	09/22/06 13:31	
Nitrogen, Ammonia	<1.0	mg/l	1.0	SM 4500-NH3 F	LKM	09/22/06 8:00	
Phenols, total	< 0.100	mg/l	0.100	EPA 9065	SAA	09/23/06 11:00	
Determination of Dissolved Metals							
Iron, dissolved	1.82	mg/l	0.030	EPA 6010B	LAR	09/22/06 16:01	

1610976-04 MW-40 Matrix: Water Collected: 09/20/06 12:35

Fox Engineering Associates, Inc. 1601 Golden Aspen Drive, Suite 103 Ames, IA 50010

Work Order: 16I0976

October 10, 2006

Page 2 of 4

Analyte	Resu	lt MRL	Method	Analyst Analyzed Qualifier	
16I0976-04 MW-40	•		Matrix:Water		Collected: 09/20/06 12:35
Determination of Conventional Chemi	stry Parameter	rs			
Total Organic Halogens (TOX)	<0.010 m	g/l 0.010	EPA 9020	RSW	10/06/06 0:00
Chemical Oxygen Demand	<10 m	g/l 10	EPA 410.4	RVV	09/25/06 11:50
Chloride	16 m	g/l 10	EPA 9252	RFM	09/22/06 13:31
Nitrogen, Ammonia	<1.0 m	g/l 1.0	SM 4500-NH3 F	LKM	09/22/06 8:00
Phenols, total	<0.100 m	g/l 0.100	EPA 9065	SAA	09/23/06 11:00
Determination of Dissolved Metals					
Iron, dissolved	0.132 m	g/l 0.030	EPA 6010B	LAR	09/22/06 16:06
16I0976-05 MW-36			Matrix:Water		Collected: 09/20/06 13:00
Determination of Conventional Chemi	istry Parameter	rs			
Total Organic Halogens (TOX)	0.020 m		EPA 9020	RSW	10/06/06 0:00
Chemical Oxygen Demand	<10 m	_	EPA 410.4	RVV	09/25/06 11:50
Chloride	<10 m	g/l 10	EPA 9252	RFM	09/22/06 13:31
Nitrogen, Ammonia	<1.0 m	g/l 1.0	SM 4500-NH3 F	LKM	09/22/06 8:00
Phenols, total	<0.100 m	ng/l 0.100	EPA 9065	SAA	09/23/06 11:00
Determination of Dissolved Metals					•
Iron, dissolved	0.039 m	ng/l 0.030	EPA 6010B	LAR	09/22/06 16:10
16I0976-06 MW-37			Matrix:Water		Collected: 09/20/06 13:10
Determination of Conventional Chem	istry Parametei	rs			
Total Organic Halogens (TOX)	0.014 m		EPA 9020	RSW	10/06/06 0:00
Chemical Oxygen Demand	<10 m	ıg/l 10	EPA 410.4	RVV	09/25/06 11:50
Chloride	13 m		EPA 9252	RFM	09/22/06 13:31
Nitrogen, Ammonia	<1.0 m		SM 4500-NH3 F	LKM	09/22/06 14:07
Phenols, total	<0.100 m	ng/l 0.100	EPA 9065	SAA	09/23/06 11:00
Determination of Dissolved Metals					
Iron, dissolved	6.76 m	ng/l 0.030	EPA 6010B	LAR	09/22/06 16:14
1610976-07 MW-35			Matrix: Water		Collected: 09/20/06 13:30
Determination of Conventional Chem	•				
Total Organic Halogens (TOX)			EPA 9020	RSW	10/06/06 0:00
Chemical Oxygen Demand	10 m		EPA 410.4	RVV	09/25/06 11:50
Chloride	142 m		EPA 9252	RFM	09/22/06 13:31
Nitrogen, Ammonia	<1.0 m	ng/l 1.0	SM 4500-NH3 F	LKM	09/22/06 14:07
Phenols, total	<0.100 m		EPA 9065	SAA	09/23/06 11:00
Determination of Dissolved Metals					·
Iron, dissolved	<0.030 m	ng/l 0.030	EPA 6010B	LAR	09/22/06 16:18

Work Order: 16I0976

October 10, 2006

Page 3 of 4

Analyte	Re	sult	MRL	Method	Analyst	Analyzed Qual	ifie
610976-08 MW-34				Matrix: Water		Collected: 09/20/06 14:	05
Determination of Conventional Chemi	stry Parame	eters					
Total Organic Halogens (TOX)	0.056		0.010	EPA 9020	RSW	10/06/06 0:00	
Chemical Oxygen Demand	53	mg/l	10	EPA 410.4	RVV	09/25/06 11:50	
Chloride		mg/l	10	EPA 9252	RFM	09/22/06 13:31	
Nitrogen, Ammonia	<1.0	mg/l	1.0	SM 4500-NH3 F	LKM	09/22/06 14:07	
Phenols, total	< 0.100	mg/l	0.100	EPA 9065	SAA	09/23/06 11:00	
Determination of Dissolved Metals							
Iron, dissolved	0.074	mg/l	0.030	EPA 6010B	LAR	09/22/06 16:22	
610976-09 SW-6				Matrix:Water	", "	Collected: 09/20/06 10:	10
Determination of Conventional Chemi	stry Parame	eters			•		
Total Organic Halogens (TOX)	0.062		0.010	EPA 9020	RSW	10/06/06 0:00	
Chemical Oxygen Demand		mg/l	10	EPA 410.4	RVV	09/25/06 11:50	
Chloride		mg/l	10	EPA 9252	RFM	09/22/06 13:31	
Nitrogen, Ammonia		mg/l	1.0	SM 4500-NH3 F	LKM	09/22/06 14:07	
Phenols, total	< 0.100	mg/l	0.100	EPA 9065	SAA	09/23/06 11:00	
Determination of Dissolved Metals						·	
Iron, dissolved	5.77	mg/l	0.030	EPA 6010B	LAR	09/22/06 16:27	
1610976-10 SW-1			·. · · · · · · · · · · · · · · · · · ·	Matrix:Water		Collected: 09/20/06 13:	:50
Determination of Conventional Chemi	stry Parame	eters					
Total Organic Halogens (TOX)	< 0.010	mg/l	0.010	EPA 9020	RSW	10/06/06 0:00	
Chemical Oxygen Demand	11	mg/l	10	EPA 410.4	RVV	09/25/06 11:50	
Chloride		mg/l	10	EPA 9252	RFM	09/22/06 13:31	
Nitrogen, Ammonia		mg/l	1.0	SM 4500-NH3 F	LKM	09/22/06 14:07	
Phenols, total	< 0.100	mg/l	0.100	EPA 9065	SAA	09/23/06 11:00	
Determination of Dissolved Metals							
Iron, dissolved	<0.030	mg/l	0.030	EPA 6010B	LAR	09/22/06 16:31	
1610976-11 SW-2				Matrix: Water		Collected: 09/20/06 14	:40
Determination of Conventional Chemi	istry Param	eters					
Total Organic Halogens (TOX)	0.031		0.010	EPA 9020 .	RSW	10/06/06 0:00	
Chemical Oxygen Demand	<10	mg/l	10	EPA 410.4	RVV	09/25/06 11:50	
Chloride		mg/l	10	EPA 9252	RFM	09/22/06 13:31	
Nitrogen, Ammonia	<1.0	mg/l	1.0	SM 4500-NH3 F	LKM	09/22/06 14:07	
Phenols, total	< 0.100	mg/l	0.100	EPA 9065	SAA	09/23/06 11:00	
Determination of Dissolved Metals							
Iron, dissolved	< 0.030	mg/l	0.030	EPA 6010B	LAR	09/22/06 16:35	

MRL= Method Reporting Limit.

Work Order: 16I0976

October 10, 2006

Page 4 of 4

1610976-11

SW-2

Matrix: Water

Collected: 09/20/06 14:40

End of Report

Keystone Laboratories, Inc. Jim Eggers For Jeffrey King, Ph.D.

Laboratory Director

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety. Samples were preserved in accordance with 40 CFR for pH adjustment unless otherwise noted. MRL= Method Reporting Limit.

LABORATOR	O [2 N C.	☐ 600 I Newt	E. 17 th St. S. ton, IA 50208 ne: 641-792-8451 641-792-7989	30 Wa Ph	12 Ansaterloo one: 3 x: 3	bord , IA 19-2 19-2	ough 5070 35-4 35-2	Ave. 11 440 480			as City e: 913	s /, KS 66103 3-321-7856 3-321-7937		GEOF		
SITE NAME: Amis.	ch Brow	-	end (Carollis)					NAME: Jobh Dhipple COMPANY NAME: FOX Engineerig ADDRESS:						BILL TO: NAME: Mr. William Fedeler COMPANY NAME: ADDRESS: PO Box 2483 CITY/ST/ZIP: Amis, IA, Sudio PHONE: Keystone Quote No.:			
CLIENT SAMPLE NUMBER	DATE	TIME	SAMPL	LE LOCATION	NO. OF CONTAINERS	MATRIX	GRAB/COMPOSITE	6	ANAL	YSES	REQUI		LABORAT SAMPLE UPON RE	LAB US	LABORATORY SAMPLE NUMBER		
MN 38	9/20	1030		Wed 35	5	W	0	X	X				CAMIL SEC		01		
MW 39	9/20	10:45		-Well 39	5	ีฟ	6		X						02		
MW 41	9/20	12:20		rWell 4/	5	W	G	X	X						03		
MW 40	9/20	12:35		For Will YO	5	W	G	X	X						64		
MW 36	9/20	100	_	Well 36	5	W	G	X	X						05		
MW 37	9/20	1:10	Monto	-Well 37	5	W	G	X	*						C/C		
MW 35	9/20	1:30	Mond	Well 35	5	W	G	X	4						07		
MW 34	9/20	2:05		orWell JY	5	W	G	×							08		
SN 6	9/20	10:10	Surface	elletor 6	5	<u>W</u>	G	8	×						09		
SWI	1/20	1:50	Surface	e Water 1	5	W	G	8	2						10		

Relinquished by: (Signature)	Date \$\frac{421/SC}{Time 900}	Received by: (Signature)	Date Time	Turn-Around: Standard	Rush	Contact Lab Prior to Submission
Relinquished by: (Signature)	Date Time	Received for Lab by: (Signature)	Date 4-24-06 Time 1050	Remarks: Mckls	Samples have	hun fill flow
			ow - Lab Copy •	Pink - Sampler Copy		FORM: CCR 7-9

Surface Water

913-321-7937 Fax: Phone: 913-321-7856 Kansas City, KS 66103 amsbA 4081 🔲

FORM: CCR 7-9

PAGE 2 OF C

www.keystonelabs.com 319-235-2480 Fax: Phone: 319-235-4440 Waterloo, IA 50701 ☐ 3012 Ansborough Ave.

641-792-7989 Fax: Phone: 641-792-8451 Mewton, IA 50208 □ 600 E. 17th St. S.

Aeystone

LABORATORIES, INC.

FORM: CCR 7-		bler Copy	Pink - Samp	- Λd	ab Co	s - wolle	→ 人€	1 - Return with Report	snighO				
					SU	ewill	-	the historia	27	Time			
			Remarks:	30-	78	naie	rre)	ed for Lab by: (Signatu	Несеме	Date	(vy: (5ignature)	d bədsiupniləA
act Lab Prior to Submission	stnoO		.0/20000			T			P	C. G amiT		M	TIDEA /
	Haufi 🔲	ndard	ISIS 🔲			əmiT			20	Date 9/25/		7	FOUL
		:pu	luonA- <u>mu</u> uT			Date		ed by: (Signature)	- Receive	Date #5		9): (Signature	Relinquished b
													1
			T	\Box /									
				$\overline{}$	7								
			1	1		1	1						
			1	\forall		\square				1	/		
		1 1 1		N		1					<u> </u>		
		+++	+++	1		\Box	1	/	\	1/1			
		+++	+-++	11		\	1		1		1		
			+++	- \		,			\	1		1	
11		1	+++	京又	2	7	5	2-47	Suche	on:2	12/4	7	. สร
OWWENTS	SAMPLE CONDITION/CO	+++	++++		+	Ž	ĕ	E LOCATION	SAMPLI				SAMPLE N
.C SAMPLE					AA BAF	MATRIX	요 유			TIME	DATE		CLIE
YROTAROBAL Q.	пьои весепт:			50	GRAB/COMPOSITE	×	T						
	SAMPLE TEMPERAT				₽		CONTAINERS				ļ		
クくし Oエク 1)SITI		A				j		!
	EABORATORY WORK				П	Į	'B						,
NOE ONLY		REGUIRED	APLYSES P	1A		<u> </u>						<u> </u>	·
(If Applicable)	Quote No.:	Keystone.						FAX:					PHONE:
		- PHONE:						PHONE:					CITY/ST/ZIP:_
	:dlz							CITY/ST/ZIP:					
		- ADDRESS						ADDRESS:	Main Van		0_		ADDRESS:
		COMPAN						COMPANY NAME:	Je Lending		/ / /	-12MA	SITE NAME:_
1-40	See shee	BILL TO:			7-	Donk	~?\\\\	REPORT TO:		۲,	Macj y	J-J-M	PRINT OR TYPE : SAMPLER:
									l		WO 120	THOTTANGOSINI	BOYT OF THIRD

Accreditations: Iowa DNR: 095 New Jersey DEP: IA001 Kansas DHE: E-10287

ANALYTICAL REPORT

October 16, 2006

Page 1 of 6

Work Order: 16I0364

Report To

Todd Whipple

Fox Engineering Associates, Inc. 1601 Golden Aspen Drive, Suite 103

Ames, IA 50010

Work Order Information

Date Received: 09/11/2006 11:30AM

Collector: Mitch Brown Phone: 515-233-0000

PO Number:

Project: Gity of Ames SEF

AMES CAD (P94-6)

Project Number: [none]

Analyte	Res	ult	MRL	Method	Analyst	Analyzed Qu	alifier
1610364-01 \ MW-211				Matrix:Water		Collected: 09/07/06 0	9:25
Determination of Conventional Chemistry	y Paramet	ers					
Total Organic Halogens (TOX)	0.065 1	mg/l	/ 0.010	EPA 9020	RSW	09/25/06 0:00	
Chemical Oxygen Demand	18 ı	mg/l 🦯	10	EPA 410.4	SAA	09/12/06 13:39	
Chloride	13 1		10	EPA 9252	RFM	09/12/06 11:02	
Nitrogen, Ammonia	<1.0 r		1.0	SM 4500-NH3 F	SAA	09/12/06 11:34	
Phenols, total	<0.100 r	ng/l [/]	0.100	EPA 9065	KRV	09/12/06 17:24	
Determination of Dissolved Metals		1					
Iron, dissolved	0.292	mg/l	0.030	EPA 6010B	LAR	09/13/06 15:20	
1610364-02 MW-210				Matrix:Water		Collected: 09/07/06 0	9:40
Determination of Conventional Chemistry							
Total Organic Halogens (TOX)	0.052		0.010	EPA 9020	RSW	09/25/06 0:00	
Chemical Oxygen Demand	/<10\1	mg/l	· 10	EPA 410.4	SAA	09/12/06 13:39	
Chloride	/ 139		10	EPA 9252	RFM	09/12/06 11:02	
Nitrogen, Ammonia	/ <1.0 i		1.0	SM 4500-NH3 F	SAA	09/12/06 11:34	
Phenols, total	£ <0.100 1	mg/l	0.100	EPA 9065	KRV	09/12/06 17:24	
Determination of Dissolved Metals				•			
Iron, dissolved	2.03	mg/l	0.030	EPA 6010B	LAR	09/13/06 15:24	
1610364-03 MW-212				Matrix: Water		Collected: 09/07/06 0	9:55
Determination of Conventional Chemistr							
Total Organic Halogens (TOX)	0.071	mg/l	0.010	EPA 9020	RSW	09/25/06 0:00	
Chemical Oxygen Demand /	<10	mg/l	10	EPA 410.4	SAA	09/12/06 13:39	
Chloride	220	_	10	ÈPA 9252	RFM	09/12/06 11:02	
Nitrogen, Ammonia	<1.0	mg/l	1.0	SM 4500-NH3 F	SAA	09/12/06 11:34	
Phenols, total	< 0.100	mg/l	0.100	EPA 9865	KRV	09/12/06 17:24	
Determination of Dissolved Metals							
Iron, dissolved	2.70	mg/l	0.030	EPA 6010B	LAR	09/13/06 15:28	

1610364-04

MW-13

Matrix: Water

Collected: 09/07/06 10:15

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety. Samples were preserved in accordance with 40 CFR for pH adjustment unless otherwise noted. MRL= Method Reporting Limit.

Phone 641-792-8451

600 East 17th Street South Newton, IA 50208

Fax 641-792-7989

Work Order: 1610364

October 16, 2006

Page 2 of 6

	Du	MDI	Method	
Analyte 16I0364-04 MW-13	Result	MRL	Matrix: Water	Analyst Analyzed Qualifier Collected: 09/07/06 10:15
Determination of Conventional Chemi	stry Paramatars)	Collected: 09/07/06 10:15
Total Organic Halogens (TOX)	0.059 mg/l	0.010	EPA 9020	RSW 09/25/06 0:00
Chemical Oxygen Demand	13 mg/l	10 /	EPA 410.4	SAA 09/12/06 13:39
Chloride Chloride	240 mg/l	10 /	EPA 9252	RFM 09/12/06 11:02
Nitrogen, Ammonia	<1.0 mg/l	1.0	SM 4500-NH3 F	SAA 09/12/06 11:34
Phenols, total	<0.100 mg/l	0.100	EPA 9065	KRV 09/12/06 17:24
Thenois, total	10.100 Ing/1	0.100	EFA 9005	111(09/12/00 17.24
Determination of Dissolved Metals		/	•	
Iron, dissolved	0.551 mg/l	0.030	EPA 6010B	LAR 09/13/06 15:32
16I0364-05 MW-14		/	Matrix: Water	Collected: 09/07/06 11:15
Determination of Conventional Chemi	stry Parameters /			
Total Organic Halogens (TOX)	0.047 mg/l	0.010	EPA 9020	RSW 09/25/06 0:00
Chemical Oxygen Demand	28 mg/l /	10	EPA 410.4	SAA 09/12/06 13:39
Chloride	142 mg/l /	10	EPA 9252	RFM 09/12/06 11:02
Nitrogen, Ammonia	$\langle 1.0 \text{ mg/l} \rangle$	1.0	SM 4500-NH3 F	SAA 09/12/06 11:34
Phenols, total	₹0.100 mg/J	0.100	EPA 9065	KRV 09/12/06 17:24
Determination of Dissolved Metals				
Iron, dissolved	0.437 mg/l	0.030	EPA 6010B	LAR 09/13/06 15:37
16I0364-06 MW-16	X		Matrix:Water	Collected: 09/07/06 11:25
Determination of Conventional Chem.	istry Parameters			. •
Total Organic Halogens (TOX)	0.042 mg/l	0.010	EPA 9020	RSW 09/25/06 0:00
Chemical Oxygen Demand	/19 mg/	10	EPA 410.4	SAA 09/12/06 13:39
Chloride	/<10 mg/l\	10	EPA 9252	RFM 09/12/06 11:02
Nitrogen, Ammonia	/ 5.5 mg/l \	1.0	SM 4500-NH3 F	SAA 09/12/06 11:34
Phenols, total	50.100 mg/l \	0.100	EPA 9065	KRV 09/12/06 17:24
				·
Determination of Dissolved Metals	(00 //	\ 0.020	EDA (010D	LAR 09/13/06 15:41
Iron, dissolved	6.89 mg/l	0.030	EPA 6010B	LAR 09/13/06 15:41
16I0364-07 MW-15	1		Matrix:Water	Collected: 09/07/06 11:35
Determination of Conventional Chem	istry Parameters	\		•
Total Organic Halogens (TOX)	0.074 mg/l	0.010	EPA 9020	RSW 09/25/06 0:00
Chemical Oxygen Demand	<10 mg/l	10	EPA 410.4	SAA 09/14/06 13:48
Chloride	202 mg/l	10	\ EPA 9252	RFM 09/12/06 11:02
Nitrogen, Ammonia	<1.0 mg/l	1.0	SM 4500-NH3 F	SAA 09/12/06 11:34
Phenols, total	<0.100 mg/l	0.100	BPA 9065	KRV 09/12/06 17:24
2 (1) (1) (1)				
Determination of Dissolved Metals	<0.020 ma/l	0.000	\ DDA 6010D	LAR 09/13/06 15:45
Iron, dissolved	<0.030 mg/l	0.030	EPA 6010B	CF.CI DOILING MALE

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety. Samples were preserved in accordance with 40 CFR for pH adjustment unless otherwise noted. MRL= Method Reporting Limit.

Work Order: 16I0364

October 16, 2006
Page 3 of 6

Analyte	Res	ult	MRL	Method	Analyst	Analyzed	Qualifier
16I0364-08 MW-18				Matrix: Water	(Collected: 09/	07/06 14:15
Determination of Conventional Chemia	stry Paramei	ers			•		
Total Organic Halogens (TOX)	0.061		0.010	EPA 9020	RSW	09/26/06 0:	
Chemical Oxygen Demand	<10	_	10	EPA 410.4	SAA	09/14/06 13	:48
Chloride	<10	mg/l	10	EPA 9252	RFM	09/12/06 11	:02
Nitrogen, Ammonia	3.4	-	1.0	SM 4500-NH3 F	SAA	09/12/06 11	:34
Phenols, total	< 0.100	_	0.100	EPA 9065	KRV	09/12/06 17	:24
Determination of Dissolved Metals							
Iron, dissolved	4.97	mg/l	0.030	EPA 6010B	LAR	09/13/06 15	:49
16I0364-09 MW-17		. /		Matrix:Water	(Collected: 09/	07/06 14:35
Determination of Gonventional Chemic Total Organic Halogens (TOX)	stry Paramet 0.062		0.010	EPA 9020	RSW	09/26/06 0:	00
Chemical Oxygen Demand	<10	- ,	10	EPA 410.4	SAA	09/12/06 13	
Chloride		mg/l	10	EPA 9252	RFM	09/12/06 11	
Nitrogen, Ammonia	<1.0		1.0	SM 4500-NH3 F	SAA	09/12/06 11	
Phenols, total	<0.100		0.100	EPA 9065	KRV	09/12/06 17	
Determination of Dissolved Metals	\bigvee						
Determination of Dissolved Metals Iron, dissolved	0.634	mg/l	0.030	EPA 6010B	LAR	09/13/06 15	:54
16I0364-10 MW-9				Matrix:Water	(Collected: 09/	07/06 14:50
Determination of Volatile Organic Co							
Carbon Disulfide	<1.0	ug/l	1.0	EPA 8260B	TVK	09/19/06 22	:48
Benzene	1.8	ug/l	1.0	EPA 8260B	TVK	09/19/06 22	:48
Chlorobenzene	3.5	ug/l	1.0	EPA 8260B	TVK	09/19/06 22	
1,4-Dichlorobenzene	5.1	ug/l	1.0	EPA 8260B	TVK	09/19/06 22	
Surrogate: Dibromofluoromethane	103 %			67-135	TVK	09/19/06 22	
Surrogate: 1,2-Dichloroethane-d#	103 %		/	73-126	TVK	09/19/06 22	
Surrogate: Toluene-d8	101 %		\	80-117	TVK	09/19/06 22	
Surrogate: 4-Bromofluorobenzene	106 %			74-125	TVK	09/19/06 22	:48
Determination of Conventional Chemi	istry Parame	ters					
Total Organic Halogens (ŤOX)	0.164	_	0.010	EPA 9020	RSW	09/26/06 0	:00
Chemical Oxygen Demand		mg/l	10	EPA 410.4	SAA	09/12/06 13	
Chloride /		mg/l	10	EPA 9252\	RFM	09/12/06 11	
Nitrogen, Ammonia /	39.6		10.0	SM 4500-NH3 F	SAA	09/12/06 11	
Phenols, total	< 0.100	mg/l	0.100	EPA 9065	KRV	09/12/06 17	2:24
Determination of Dissolved Metals				. `	\		
Iron, dissolved	50.0	mg/l	0.030	EPA 6010B	LAR	09/13/06 16	.00

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety. Samples were preserved in accordance with 40 CFR for pH adjustment unless otherwise noted. MRL= Method Reporting Limit.

Work Order: 16I0364

October 16, 2006

Page 4 of 6

Analyte	Res	ult	MR/L	Method	Analys	t Analyzed Q	ualifier
6I0364-11 \SW-1				Matrix: Water		Collected: 09/08/06	11:40
Determination of Conventional Chemis	try Paramet	ers					
Total Organic Halogens (TOX)	0.045		0.010	EPA 9020	RSW	09/26/06 0:00	
Chemical Oxygen Demand	<10	mg/l 🎤	10	EPA 410.4	SAA	09/12/06 13:39	
Chloride	38	mg/l 🥖	10	EPA 9252	RFM	09/12/06 11:02	
Nitrogen, Ammonia	<1.0	mg/}	1.0	SM 4500-NH3 F	SAA	09/12/06 11:34	
Phenols, total	< 0.100	m/g/l	0.100	EPA 9065	KRV	09/12/06 17:24	٠
Determination of Dissolved Metals $igwedge$	1	,		·			
ron, dissolved	0.056	mg/l	0.030	EPA 6010B	LAR	09/13/06 16:31	•
6I0364-12 SW-2	X			Matrix: Water		Collected: 09/08/06	12:10
Determination of Conventional Chemis							
Total Organic Halogens (TOX)	0.017		0.010	EPA 9020	RSW	09/26/06 0:00	
Chemical Oxygen Demand	<10\		10	EPA 410.4	SAA	09/14/06 13:48	·
Chloride		mg/l	10	EPA 9252	RFM	09/12/06 11:02	
Nitrogen, Ammonia	<1.0		1.0	SM 4500-NH3 F	SAA	09/12/06 11:34	
Phenols, total	< 0.100	mg/l	0.100	EPA 9065	KRV	09/12/06 17:24	
Determination of Dissolved Metals	<0.020		\		TAD	00/12/06 16:25	
ron, dissolved	<0.030	mg/I 	0.030	EPA 6010B	LAR	09/13/06 16:35	
610364-13 Trip/Blank Lot				Matrix:Water		Collected: 09/08/06	00:00
Determination of Volatile Organic Con		,,			CT 77.	004006.00.05	
Carbon Disulfide	<1.0	_	1.0	EPA 8260B	TVK	09/19/06 23:27	
Benzene /	<1.0	_	1.0	EPA 8260B	TVK	09/19/06 23:27	
Chlorobenzene /	<1.0	-	1.0	BPA 8260B	TVK	09/19/06 23:27	
1,4-Dichlorobenzerle	<1.0	ug/l	1.0	EPA 8260B	TVK	09/19/06 23:27	
Surrogate: Dibromofluoromethane	102 %			<i>67-13</i> 8	TVK	09/19/06 23:27	
Surrogate: 1,2-Dichloroethane-d4	99.0 %			73-126	TVK	09/19/06 23:27	
Surrogate: Toluene-d8	102 %			80-117	TVK	09/19/06 23:27	
Surrogate: 4 Bromofluorobenzene	106 %			74-125	T∀K	09/19/06 23:27	
6I0364-14 MW-8				Matrix:Water		Collected: 09/08/06	12:35
Determination of Conventional Chemis			0.040	T7D 4 0000	DOW.	00/06/06 0:00	
Total Organic Halogens (TOX)	0.036	_	0.010	EPA 9020	RSW	09/26/06 0:00	
Chemical Oxygen Demand		mg/l	10	EPA 410.4	SAA	09/12/06 13:39	
Chloride		mg/l	10	EPA 9252	RFM	09/12/06 11:02	
Nitrogen, Ammonia		mg/l	1.0	SM 4500-NH3 F	SAA	09/12/06 11:34	
Phenols, total	< 0.100	mg/l	0.100	EPA 9065	KRV	09/12/06 17:24	
Determination of Dissolved Metals				EPA 6010B	LAR	09/18/06 12:49	
Iron, dissolved	4.95		0.030				

MRL= Method Reporting Limit.

Work Order: 16I0364

October 16, 2006

Page 5 of 6

Analyte	Result	MRL	Method	Analyst	t Analyzed	Qualifier
16I0364-14 MW-8			Matrix: Water		Collected: 09/08/0	6 12:35
16I0364-15 MW-7			Matrix: Water		Collected: 09/08/0	6 12:50
Determination of Conventional Chem	istry Parameters					
Total Organic Halogens (TOX)	0.030 mg/l	0.010	EPA 9020	RSW	09/26/06 0:00	
Chemical Oxygen Demand	<10 mg/l	10	EPA 410.4	SAA	09/12/06 13:39	
Chloride	13 mg/l	10	EPA 9252	RFM	09/12/06 11:02	
Nitrogen, Ammonia	<1.0 mg/l	1.0	SM 4500-NH3 F	SAA	09/12/06 11:34	
Phenols, total	<0.100 mg/l	0.100	EPA 9065	KRV	09/12/06 17:24	
Determination of Dissolved Metals						
Iron, dissolved	1.44 mg/l	0.030	EPA 6010B	LAR	09/18/06 13:10	
16I0364-16 MW-6			Matrix: Water		Collected: 09/08/0	6 13:00 .
Determination of Conventional Chem.	-		***			
Total Organic Halogens (TOX)	0.026 mg/l	0.010	EPA 9020	RSW	09/26/06 0:00	
Chemical Oxygen Demand	<10 mg/l	10	EPA 410.4	SAA	09/12/06 13:39	
Chloride	81 mg/l	10	EPA 9252	RFM	09/12/06 11:02	
Nitrogen, Ammonia	<1.0 mg/l	1.0	SM 4500-NH3 F	SAA	09/12/06 11:34	
Phenois, total	<0.100 mg/l	0.100	EPA 9065	KRV	09/12/06 17:24	
Determination of Dissolved Metals						
Iron, dissolved	<0.030 mg/l	0.030	EPA 6010B	LAR	09/18/06 13:14	
1610364-17 MW-5 (MW	-29)		Matrix:Water		Collected: 09/08/0	6 13:15
Determination of Conventional Chem						
Total Organic Halogens (TOX)	0.035 mg/l	0.010	EPA 9020	RSW	09/26/06 0:00	
Chemical Oxygen Demand	<10 mg/l	10	EPA 410.4	SAA	09/12/06 13:39	. ;
Chloride	<10 mg/l	10	EPA 9252	RFM	09/12/06 11:02	
Nitrogen, Ammonia	<1.0 mg/l	1.0	SM 4500-NH3 F	SAA	09/12/06 11:34	
Phenols, total	<0.100 mg/l	0.100	EPA 9065	KRV	09/12/06 17:24	
Determination of Dissolved Metals						
Iron, dissolved	0.096 mg/l	0.030	EPA 6010B	LAR	09/18/06 13:19	
1610364-18 MW-4 (MW-			Matrix:Water		Collected: 09/08/0	6 13:15
Determination of Conventional Chem					001001000000	
Total Organic Halogens (TOX)	0.016 mg/l	0.010	EPA 9020	RSW	09/26/06 0:00	•
Chemical Oxygen Demand	10 mg/l	10	EPA 410.4	SAA	09/12/06 13:39	
Chloride	100 mg/l	10	EPA 9252	RFM	09/12/06 11:02	
Nitrogen, Ammonia	<1.0 mg/l	1.0	SM 4500-NH3 F	SAA	09/12/06 11:34	
Phenols, total	<0.100 mg/l	0.100	EPA 9065	KRV	09/12/06 17:24	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety. Samples were preserved in accordance with 40 CFR for pH adjustment unless otherwise noted. MRL= Method Reporting Limit.

Work Order: 16I0364

October 16, 2006

Page 6 of 6

1610364-18

MW-4

Matrix: Water

Collected: 09/08/06 13:15

Determination of Dissolved Metals Iron, dissolved

<0.030 mg/l

0.030

EPA 6010B

LAR

09/18/06 13:23

End of Report

Keystone Laboratories, Inc.

Jeffrey King, Ph.D.
Laboratory Director

	1	6	Y	3	t	0		9	
L A	۱В	OR	Ā	T C	R	LES	: 1	N C	

☐ 600 E. 17th St. S. Newton, IA 50208 Phone: 641-792-8451

Waterloo, IA 50701 Phone: 319-235-4440

3012 Ansborough Ave.

Kansas City, KS 66103 Phone: 913-321-7856

1 110110	. 010	02.	, 000
Fax:	913	-321	-7937

PAGE	 OF_	3
		_

LABORATOR	IES, I	NC.	Fax:	641-792-7989	Fa ww	x: 3 vw.key			180 com	Fa	x: 91	3-32 ⁻	1-7937		PAGE_	OF
SAMPLER: Mitch Brown SITE NAME: M.S Sandar Cends!! ADDRESS: Le CO (-OCA) CITY/ST/ZIP: PHONE:			ds:V	ADDRESS:					BILL TO: NAME: Mr. John Joiner, Publich COMPANY NAME: (it of others ADDRESS: Sis Chrk CITY/ST/ZIP: Ames, IA Sooro PHONE: Keystone Quote No.: (If Applicable)			>/0				
CLIENT SAMPLE NUMBER	DATE	TIME	SAMPI	LE LOCATION	NO. OF CONTAINERS	MATRIX	GRAB/COMPOSITE	8		(SES RE	QUIRED		LABORATOR SAMPLE TE UPON RECE	[C] MPERATURI IPT: -	RDEF NO.	
MW 211	917	9:25	Monto Dell	211	5	W	G	X	X							
MWZO	9/7	9:40	Mandoel	Jell 210	15	2	G	r Q	C							<u> </u>
MW 212	9/7	9:55		Well 212 /	15	2	C	R	c							<u> </u>
MW 13	9/7	10:15	A	Well 13 /	5	W	G	X X	_ ان							04
MW 14	9/7	lt:15		r Well 14	5	W	G	X	0							05
MW 16	9/7	11:25		Well 16	5	7	G	برحر	c							<u> </u>
MW 15	9/7	11:25	Mont	or Weld 15	5	7	C	X								<u></u> <u>Oʻ</u>
MW18	9/7	2:15	Monde	Well 18	5	W	G	χ	<u>t </u>							<u> </u>
MW 17	9/7	2:55		Key 17	5	W	6	ر نخ								09
MW 9	9/7	2:50	Mond	Well 9	8	K	G	x ;	x X							10
Relinquished by: (Signature	_	Date 1/	:15	ved by: (Signature)		Dat	ie		-	n-Around Stand	ard		Rush _			to Submission
Relinquished by: (Signature	e)	Date Time	Recei	ved for Lab by: (Sign	ature)			06 An	Rei	marks:	ote 1 1,4-	= be dich	nzene, ce brobenzin	etond:	5uth.L	, chlorosen

Original - Return with Report • Yellow - Lab Copy

Time 11:30 Am

Pink - Sampler Copy

FORM: CCR

Lished by: (Signature) Time	1
Contact Lab Prior to Submission	1
1 me 2/15 Ontact Lab Prior to Submission	1
ished by: (Signature) Date \$\signature \langle \langl	
	•
	!
E) X M Z / M3	<u>J</u>
E1 2 2 Mellow Superflow 2 De 2 De 1800 1800 1800 1800 1800 1800 1800 180	
11. 19/8 11:40 Surbellator S W GXX	;
NPLE NUMBER H SAMPLE LOCATION O H H W W O O H H W W O O H H W W O O H H W W O O O H H W W O O O H H W W O O O H H W W O O O H H W W O O O H H W W O O O O	√S
OCITENT SAMPLE LOCATION XIELLW WORTH ON ON XIELLW WORTH ON	
	-
WILL WINDER TO TO TO THE SHAPE TO TO THE SHAPE TO THE SHA	
EACH TO THE CONTROL OF THE CONTROL O	
NALYSES REQUIRED LAB USE ONLY	
E: Keystone Quote No.: (If Applicable)	1011
LHOME:	PHON
SIZIB-	- 1
ESS: ADDRESS: ADDRESS:	1
NAME: The Sent Company name: Sec 51681 COMPANY NAME: COMPANY NAME: COMPANY NAME:	1
DR TYPE INFORMATION BELOW LER: See See 1 NAME: See 5 See 1 NAME: See 5 See 1	TUIRY
www.keystonelabs.com	
BORATORIES, INC. Fax: 641-792-7989 Fax: 319-235-2480 Fax: 913-321-7937 Phone: 641-792-8451 Phone: 319-235-4460 Phone: 913-321-7937	
600 E. 17th St. S. 3012 Ansborough Ave. 1304 Adams	1

3012 Ansborough Ave. 600 E. 17th St. S. 1304 Adams **Veystone** Newton, IA 50208 Waterloo, IA 50701 Kansas City, KS 66103 Phone: 913-321-7856 Phone: 319-235-4440 Phone: 641-792-8451 PAGE_3_OF_3_ Fax: 913-321-7937 Fax: 319-235-2480 Fax: 641-792-7989 LABORATORIES, INC. www.keystonelabs.com PRINT OR TYPE INFORMATION BELOW SAMPI FR: Mitch SOWN REPORT TO: BILL TO: NAME: SCC Sheet See Sheet 1 NAME:__ Ames Sentar Lond 11/ COMPANY NAME:_____ COMPANY NAME: SITE NAME: ADDRESS:__ ADDRESS: ADDRESS: CITY/ST/ZIP:_____ CITY/ST/ZIP: CITY/ST/ZIP: PHONE: PHONE:__ Keystone Quote No.:_____ PHONE: FAX:_ ANALYSES REQUIRED LAB USE ONLY LABORATORY WORK ORDER NO. GRAB/COMPOSITE 16I0364 SAMPLE TEMPERATURE UPON RECEIPT: AMES CED MATRIX TIME CLIENT SAMPLE NUMBER SAMPLE CONDITION/COMMENTS SAMPLE LOCATION Monter Hell 8 MW G XX (275 MW Montor Well 7 12:50 X نحر Mondor Well 6. MW 6 xx 100 (MWZ9) 9/8 1:15 XX MU 4(MW28) 9/8 Monetor Wel 1:25 XX Date 9/8/06 Relinquished by: (Signature) Received by: (Signature) Date Turn-Around: Standard Time Time Contact Lab Prior to Submission Received for Lab by: (Signature) Date 9/11/06 Remarks: Relinquished by: (Signature) Date Time //304 W Time FORM: CCR Pink - Sampler Copy

Original - Return with Report

Comments	D.) FIELD MEASUREMENT Weather Conditions Field Measurments (afte Temperature Equipment U: pH Equipment U: Specific Conditions Equipment U:	Equipment used: Bailer type Pump type If not dedic	Quantity of Water Removed fro No.of Well Volumes (based on Was well pumped/bailed dry?	C.) WELL PURGING	Before Purging *After Purging *Before Sampling		Groun	Elevation: Top of Depth of Well Equipment Used	B.) GROUNDWATER	Well/Piezometer Properly Capped?	A.) MONITORING WI	Name of person sampling	Monitoring Well/Piezometer No.	Site Name AMES-STORY ENVIronmental
	SUMMY 60 r stabilization): 22 sed HACH COM 7,7 1,7 1,28 HACH COM 128 HACH COM 128	ment used: Bailer type Pump type If not dedicated, method of cleaning	Quantity of Water Removed from Well (gallons) 7 gc.(No.of Well Volumes (based on current water level) 3 Was well pumped/bailed dry? No	•	9/6/06 9:50	Date/Time	Groundwater Level (+/- 0.01 foot below top of inner casing, MSL)	inner well casing 91	B.) GROUNDWATER ELEVATION MEASUREMENT (+/- 0.01 foot, MSL)	roperly Capped? YES	A.) MONITORING WELL/PIEZOMETER CONDITIONS	AME	MW-60	1
	Units Units POCKET TAL COMPANY POCKET F Units Company POCKET F	'Dedicated Bailer 'Dedicated Bailer	7 Jal		7.88	Depth to Gr Groundwater Elv	ow top of inner casing, MS	Ground Elevation sing Diameter (in inches	VT (+/- 0.01 foot, MSL)	Standing Wate	SNS	Downgladielit	Upgradient V	ANDFILPERMIT No. 85- SI
						Groundwater Elevation	\$L):	30.046		Standing Water or Litter? No				SDP-13-91P

*Omit if only measuring groundwater elevations.

NOTE: Attach Laboratory Report and 8-12" x 11" site plan showing locations of all surface and groundwater monitoring points. One map per sampling round.

Site Name	AMES-STORY	Environmental	LANDFILL Permit No.	ଷ 5-	SDP-1	3-91P
Monitoring '	Well/Piezometer No	MW-7	Upgradient _			
Name of pe	erson sampling	JMB	Downgradie	nt		
	A.) MONITORING	WELL/PIEZOMETER	CONDITIONS			
	Well/Piezometer	Properly Capped?_		Standing V If yes, expl	Vater or Litter ain	7 No
	B.) GROUNDWAT	ER ELEVATION MEA	SUREMENT (+/- 0.01	foot, MSL)		
	Elevation: Top Depth of Well Equipment Us		943·2 Groun Inside Casing Diam		n <u>940.(</u> ches) z.o.	
	Gro	undwater Level (+/- 0	.01 foot below top of inr	ner casing,	MSL):	
		Date/Time	Depth to Groundwater	r	Groundwate Elevation	er .
	Before Purging *After Purging *Before Sampling	9/8/06 9:00 9/8/06 12:5	22.51 55.0 38.01			
	C.) WELL PURGIN	1G , ,	,			•
	No.of Well Vol	ater Removed from W lumes (based on curre ped/bailed dry?	ell (gallons) 5.7 g ent water l <u>evel)</u> 1.1 146			
	Equipment us Bailer ty Pump ty If not de	pe Disposabl	'Dedicat	ed Bailer ed Bailer		
	D.) FIELD MEASU	REMENT	2			
	Temperat Equ pH Equ Specific Cond	ients (after stabilization ure 1866 HAC	Units	CKET POCKE	FAL T PAL XET PA	
	Comments	<u>-</u>				
	NOTE: Attach t	_aboratory Report and	18-12" x 11" site plan s	howing loo	ations of all s	surface and

groundwater monitoring points. One map per sampling round.

^{*}Omit if only measuring groundwater elevations.

Site Name AMES-STORY E	nuironmental	LANDFILL Permit No.	<u> ୫</u> 5-	SDP-	13-91P
Monitoring Well/Piezometer No.	MW-8	Upgradient		·	
Name of person sampling	JMB	Downgradien -	ır		
A.) MONITORING W	ELL/PIEZOMETER	CONDITIONS			
Well/Piezometer P If no, exp <u>lain</u>	roperly Capped?	YES S	Standing W f yes, expl	/ater or Litte ain	ir? No
B.) GROUNDWATER	RELEVATION MEA	ASUREMENT (+/- 0.01 f	foot, MSL)		
Elevation: Top of Depth of Well Equipment Used	71.7	942:76 Ground Inside Casing Diam			65
Groun	dwater Level (+/- 0	.01 foot below top of inn	er casing,	MSL):	
	Date/Time	Depth to Groundwater		Groundwa Elevation	ter
Before Purging *After Purging *Before Sampling	9/8/66 8200 9/8/06 12:35	37.57 47.6 35.43			-
C.) WELL PURGING		, ,			
		lell (gallons) Ogu ent water level) '8			
Equipment used Bailer type Pump type If not dedic	Disposal	' 'Dedicate	ed Bailer ed Bailer		
D.) FIELD MEASURI	EMENT				
Temperature Equip pH Equip Specific Condition	nts (after stabilizations) a 24 °C ment Used HAC 8 4 ment Used HAC		CKET : POCKE	PAL F PAL XET PA	——————————————————————————————————————
Comments	······································	van a liberate kapa de kamana (no a dia are			
		d 8-12" x 11" site plan sh			surface and

groundwater monitoring points. One map per sampling round.

^{*}Omit if only measuring groundwater elevations.

Site Name	AMES-STORY EN	vironmental	LANDFILL Permit N	10. <u>85-</u>	SDP - 13	-91P
Monitoring	Well/Piezometer No.	MW-23	Upgradi			
Name of pe	erson sampling	AMB	Downgr	adient 🗸		
	A.) MONITORING WE	LL/PIFZOMETER	CONDITIONS			
	•			Otom din a 1	A4 -4	k I.
	Well/Piezometer Pr If no, exp <u>lain</u>	openy Capped /	765	Standing v If yes, exp	Nater or Litter?	<u> </u>
	B.) GROUNDWATER	ELEVATION MEA	SUREMENT (+/- 0	0.01 foot, MSL)	*
		inner well casing				,
	Depth of Well Equipment Used	27.86 SOLINST	Inside Casing I	Diameter (in in	ches) Z·O"	
	Ground	lwater Level (+/- 0.	01 foot below top	of inner casing	, MSL):	
		Date/Time	Depth to Ground		Groundwater Elevation	
	Before Purging *After Purging *Before Sampling	9/21/06 2:30	17:7 25:10 18:00	4		
	C.) WELL PURGING		,			
	Quantity of Water No.of Well Volum Was well pumped	Removed from W es (based on curre l/bailed dry?	ell (gallons) 5. ent water level) 3 No	3 gerl		
	Equipment used: Bailer type Pump type If not dedica	Drsposa@	'Dec	dicated Bailer dicated Bailer		
	D.) FIELD MEASURE	MENT				
	Equipn Specific Condition	s (after stabilization of the control of the contro	/ / /	y POCKE	TAL T PAL XET PAL	
	Comments	·				
	NOTE: Attach Lab	oratory Report and				ace and

Site Name	AMES-STORY E	vuironmental	PUNDEITT	Permit No.	ଷ 5-	SDP-	13-91P
Monitoring '	Well/Piezometer No.	MW-24		Jpgradient _			
lame of pe	rson sampling	JMB	. '	Downgradier	nt 🗸	٠.	
	A.) MONITORING W	ELL/PIEZOMETER	CONDITIC	ONS		•	
	Well/Piezometer Pi	operly Capped?	YES		Standing V If yes, expl	Vater or Litt	er? No
	B.) GROUNDWATER	ELEVATION MEA	SUREMEN	NT (+/- 0.01 t	foot, MSL)		
	Elevation: Top of Depth of Well Equipment Used	inner well casing 20.0 50LINST	939.4 ⁴ Inside (Groun Casing Diam	d Elevation eter (in inc	n 936. hes) z.c	94
	Groun	dwater Level (+/- 0.	.01 foot belo	ow top of inr	ner casing,	MSL):	
		Date/Time		Depth to Groundwater	r	Groundwa Elevation	ater
	Before Purging *After Purging *Before Sampling	9/21/06	<u> </u>	DRY			
	C.) WELL PURGING						
	Quantity of Wate No.of Well Volum Was well pumper	Removed from W les (based on curre d/bailed dry?	eli (gallons) ent water le	vel)			
	Equipment used: Bailer type Pump type If not dedic			'Dedicat	ed Bailer ed Bailer		
	D.) FIELD MEASURE	MENT				•	•
	Temperature Equipo pH Equipo	ts (after stabilizatio nent Used 日本C nent Used 日本	H COME	•	CKET POCKE	PAL FRL	
	Equip			からるよう	y Pac	KET F	} L
	Comments						
	NOTE: Attach Lat	oratory Report and	18-12" x 11	" site plan si	howing loc	ations of all	surface and

groundwater monitoring points. One map per sampling round.

^{*}Omit if only measuring groundwater elevations.

Site Name	AMES-STORY E	nvironmental	LANDFILLPER	mit No	ଷ 5-	SDP - 13	-91P
Monitoring '	Well/Piezometer No.	MW-25		gradient _ vngradien	· ·		· · · · · · · · · · · · · · · · · · ·
Name of pe	rson sampling	JmB	-	viigiaule <u>ii</u>			
	A.) MONITORING W	/ELL/PIEZOMETER	CONDITIONS	3			
	Well/Piezometer f	Properly Capped?	YES		Standing V	Vater or Litter? Ia <u>in</u>	No
	B.) GROUNDWATE	R ELEVATION MEA	SUREMENT ((+/- 0.01 f	oot, MSL)		
	Elevation: Top of Depth of Well Equipment User	of inner well casing 19.5 3061051	906: 34 Inside Cas		d Elevatio eter (in ind		74
	Grou	ndwater Level (+/- 0.	.01 foot below	top of inn	er casing	MSL):	
		Date/Time	Dep Gro	oth to undwater		Groundwater Elevation	
	Before Purging *After Purging *Before Sampling	9/22/06 10:25	9.	65 69 54			
	C.) WELL PURGING	·	•	• 1			
	No.of Well Volui	er Removed from W mes (based on curre ed/bailed dry? No	ent water level)	5.0 ga 13	ρ - <u>-</u>		
	Equipment used Bailer type Pump type If not dedid	DISPOSAL		'Dedicate			
	D.) FIELD MEASUR	EMENT					
	Temperatur Equip pH Equip Specific Conditi	nts (after stabilization re /6 oment Used HAC	54° In): Unit H COMPAN CH COMP Unit HACH CO	y Poo	POCKET	FAL T PAL XET PAL	
	Comments				· · · · · · · · · · · · · · · · · · ·		
		boratory Report and water monitoring poi					rface and

Site Name	AMES-STORY EN	vironmental 1	ANDFILLPer	mit No	85-	SDP-	13-91P
Monitoring \	Well/Piezometer No.	MW-28		gradient _		·	·
Name of pe	rson sampling	JMB	Dov	wngradie <u>n</u>	nt 🗸	-	
	A.) MONITORING WE	LL/PIEZOMETER (CONDITIONS	S			
	Well/Piezometer Pro	operly Capped?	<u> 1ES</u>		Standing V f yes, exp	Vater or Litt la <u>in</u>	ter? No
	B.) GROUNDWATER	ELEVATION MEAS	SUREMENT ((+/- 0.01 f	oot, MSL)	ı	
	Elevation: Top of i Depth of Well Equipment Used	nner well casing 9 22.7 50LINST	Inside Cas				Z·55
	Ground	water Level (+/- 0.0	1 foot below	top of inn	er casing	, MSL):	
		Date/Time		oth to oundwater		Groundwa Elevation	
	Before Purging *After Purging *Before Sampling	9/8/06 102 9/8/06 1/25	0 <u>6</u>	*26 58 28			
	C.) WELL PURGING	11 /					
	Quantity of Water No.of Well Volume Was well pumped	Removed from Weles (based on current/bailed dry?	il walei level	8.3 go 13	ce.P		
	Pump type	DISPOSCUL (ted, method of clea			ed Bailer ed Bailer		
	D.) FIELD MEASURE	MENT					
	Temperature Equipm pH Equipm Specific Condition	s (after stabilization) 24 oct nent Used HACE	Uni 1 Compa	my Poo	CKET POCKE	FAL T PAL XET F	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
	Comments			•			
		oratory Report and te ter monitoring point					surface and

Site Name	AMES-STORY	Environmental	LANDFILL Permit No.	<u>85-5</u>	SDP - 13	-91P
Monitoring	Well/Piezometer No	MW-29	Upgradient			
Name of pe	erson sampling	JMB	Downgradio	ent 🗸		
	A.) MONITORING	WELL/PIEZOMETER	CONDITIONS			•
	Well/Piezometer	Properly Capped?	YES	Standing Wa If yes, explai	nter or Litter <u>?</u> n	<u>Vo</u>
	B.) GROUNDWAT	ER ELEVATION MEA	SUREMENT (+/- 0.01	foot, MSL)		
	Elevation: Top Depth of Well Equipment Us	of inner well casing 53.5 ed 50LING	Inside Casing Diar		942:55 es) z.o"	
	Gro	undwater Level (+/- 0.	01 foot below top of in	ner casing, N	(ISL):	
		Date/Time	Depth to Groundwate		Groundwater Elevation	
	Before Purging *After Purging *Before Sampling	9 8 06 10:0 9 8 06 1:15	0 <u>10.87</u> 46:31 15:53	- -		
	C.) WELL PURGIN	1G				
·	No.of Well Vol	ater Removed from W umes (based on curre ped/bailed dry?	ell (gallons) / go ent water level) / 5	<u> </u>		
	Pump ty	pe Disposable	' 'Dedica	ated Bailer ated Bailer		
	D.) FIELD MEASU	REMENT	_			
	Temperat Equ pH Equ Specific Cond	ients (after stabilizatio ure Z/°C iipment Used HAC B'4 iipment Used HAC	Units		AL PAL ET PAL	
	Comments				·	
		_aboratory Report and dwater monitoring poi			ions of all surf	ace and

Site Name	AMES-STORY	Environmental	LANDFIL	Permit No	<u> </u>	SDP-	13-91	P
Monitoring '	Well/Piezometer No	. MW-30		_Upgradient _				
Name of pe	erson sampling	JME	3	Downgradien	11 /			
	A.) MONITORING	WELL/PIEZOMETER	CONDIT	IONS				
	Well/Piezomete	r Properly Capped?	YES		Standing V f yes, exp	Vater or Litt la <u>in</u>	er? No	
	B.) GROUNDWAT	ER ELEVATION MEA	ASUREME	ENT (+/- 0.01 f	oot, MSL)			
	Elevation: Top Depth of Well Equipment Us		Inside	Ground Casing Diame	d Elevatio eter (in ind		.62	_ _ _
	Gro	oundwater Level (+/- 0	.01 foot b	elow top of inn	er casing,	MSL):		
	· '	Date/Time		Depth to Groundwater		Groundwa Elevation	ater	
	Before Purging *After Purging *Before Sampling	9/21/06 2:00 9/22/06 10:0) . O	38·14 56·87 39·39			-	
	C.) WELL PURGI	NG		·				
	No.of Well Vo	ater Removed from W lumes (based on curro ped/bailed dry?	ell (gallon ent water l	s) 10gal level) 3				/·
	rump ty	pe D1500 sab		_ 'Dedicate				
	D.) FIELD MEASU	JREMENT						
	Tempera Eqi pH Eqi Specific Cond	nents (after stabilization ture /5°C uipment Used HAC uitions 873	on): H CON			PAL T PAL XET F	λι	
	Comments							. - ·
	NOTE: Attach	Laboratory Report and	18-12" x 1	1" site plan sh	nowing loc	ations of al	surface an	ıd

groundwater monitoring points. One map per sampling round.

^{*}Omit if only measuring groundwater elevations.

Site Name	AMES-STORY	Environmental	LANDFILL Permit No.	85-	SDP - 13	-91P
Monitoring	Well/Piezometer No	MW-31	Upgradient_			
Name of pe	erson sampling	1 JMB	Downgradie	<u> </u>		
	A.) MONITORING	WELL/PIEZOMETER	CONDITIONS			
	Well/Piezomete If no, explain	Properly Capped?		Standing V f yes, expla	/ater or Litter?	No
	B.) GROUNDWAT	ER ELEVATION MEA	SUREMENT (+/- 0.01	foot, MSL)		
	Elevation: Top Depth of Well Equipment Us		Inside Casing Diam	d Elevation eter (in inc		
	Gro	undwater Level (+/- 0.	.01 foot below top of inr	ner casing,	MSL):	
		Date/Time	Depth to Groundwater	r .	Groundwater Elevation	
, .	Before Purging *After Purging *Before Sampling	9/21/00 1:40 1/22/06 9:49	21.05 34.6 27.71			
	C.) WELL PURGIN	1G ,				
	NO.01 Well Vo	umes (based on curie	ell (gallons) 7.2 gant water level) 3	.Q 		
	Equipment us Bailer ty Pump ty If not de	pe D15p05a	Dedicat	ed Bailer ed Bailer		
	D.) FIELD MEASU	REMENT				
	Temperat Equ pH Equ Specific Cond	nents (after stabilization ure 14°C uipment Used HAC 11971 uipment Used HAC	Units		FAL FAL KET FAL	
	Comments				· 	
			18-12" x 11" site plan si			ace and

Site Name	AMES-STORY E	vironmental	LANDFILL	Permit No	85-	SDP-	13-91	P
Monitoring	Well/Piezometer No.	MW-32	<u>.</u>	Upgradient _				
Name of pe	erson sampling	Ams		Downgradier	11 -			
	A.) MONITORING WE	ELL/PIEZOMETER	CONDITI	ONS	·			
	Well/Piezometer Pi	operly Capped?	YES		Standing V f yes, expl	Vater or Litte lain	r? No	
	B.) GROUNDWATER	ELEVATION MEA	SUREME	NT (+/- 0.01 1	foot, MSL)			
·	Elevation: Top of Depth of Well Equipment Used	inner well casing 50'5 SOLINST	139·8 Inside	Groun Casing Diam	d Elevatio eter (in inc		39°	
	Ground	dwater Level (+/- 0.	01 foot be	low top of inn	ner casing,	MSL):		
		Date/Time		Depth to Groundwater	-	Groundwat Elevation	er	
	Before Purging *After Purging *Before Sampling	9/22/06 10:50		35:95 45:0 35:78			- - ·	
	C.) WELL PURGING	• •						
	Quantity of Water No.of Well Volum Was well pumped	Removed from Wees (based on curred/bailed dry?	ell (gallons nt water le	3.8 evel) 3.8	Q			- -
	Equipment used: Bailer type Pump type If not dedica	DIGPOSES L			ed Bailer ed Bailer			
	D.) FIELD MEASURE	MENT						
	Temperature Equipn pH Equipn Specific Condition	ts (after stabilization	1):	Units Pany Poi MPANY Units Company	CKET POCKE	PAL TPAL XET PA	TL-	
	Comments							
	NOTE: Attach Lab	oratory Report and	8-12" x 1	1" site olan sh	nowina toc	ations of all	surface ar	hr

NOTE: Attach Laboratory Report and 8-12" x 11" site plan showing locations of all surface and groundwater monitoring points. One map per sampling round.

^{*}Omit if only measuring groundwater elevations.

Site Name	AMES-STORY	Environmental	LANDFILL Permit No.	85-	SDP-	13-91P		
Monitoring '	Well/Piezometer No.	MW-33	Upgradient _ Downgradier	at	· · · · · · · · · · · · · · · · · · ·			
Name of pe	erson sampling	JMB	Downgradie <u>i</u>	11 /				
	A.) MONITORING	WELL/PIEZOMETER	CONDITIONS					
	Well/Piezometer If no, explain	Well/Piezometer Properly Capped? YES Standing Water or Litter? No. explain If yes, explain						
	B.) GROUNDWATE	ER ELEVATION MEA	SUREMENT (+/- 0.01 (foot, MSL)	•			
	Elevation: Top Depth of Well Equipment Use	of inner well casing Z8 · Z ed SOLI NST	906·32 Groun Inside Casing Diam		on 904 · c ches) z · o	ο ."		
	Grou	ındwater Level (+/- 0.	01 foot below top of inn	ner casing	MSL):	•		
		Date/Time	Depth to Groundwater	•	Groundwa Elevation	ter		
	Before Purging *After Purging *Before Sampling	9/21/06 10ico	9.80 11.81 9.70			- 		
	C.) WELL PURGIN	G						
	No.of Well Volu	imes (based on curre	ell (gallons) 8 gal) ent water level) 3					
·	Equipment use Bailer typ Pump typ If not ded	e 015005a5	'Dedicate					
	D.) FIELD MEASUR	REMENT						
	pH Equi Specific Condit	ents (after stabilization ire // C pment Used HAC pment Used HAC	Units H Company Por CH Company Units ACUT Company	POCKE	PAL T PAL XET PA	——————————————————————————————————————		
	Comments							
			l 8-12" x 11" site plan sh nts. One man ner samo			surface and		

Site Name	AMES-STORY E	nvironmental	LANDFILLPE	rmit No	85-	SDP-	13-91	P
Monitoring \	Well/Piezometer No.	_MW-34		gradient_				
Name of pe	rson sampling	JMB		wngradien			···	
	A.) MONITORING W	ELL/PIEZOMETER	CONDITION	S				
	Well/Piezometer P	roperly Capped?	YES		Standing V f yes, expl	Vater or Lit	ter? No	
	B.) GROUNDWATE	RELEVATION MEA	SUREMENT	(+/- 0.01 f	oot, MSL)			
	Elevation: Top o Depth of Well Equipment Used	finner well casing 17.3 504.05	909 5 Inside Ca	Groun sing Diam		n <u>906</u> ches) 2.0		
	Groun	dwater Level (+/- 0	.01 foot below	top of inn	er casing,	MSL):		
		Date/Time		pth to oundwater		Groundw Elevation		
	Before Purging *After Purging *Before Sampling	9/19/06 1:50 9/20/06 2:05) <u>5</u>	5·5 3·87 •95				
•	C.) WELL PURGING	• •		•				
	Quantity of Wate No.of Well Volur Was well pumpe	or Removed from W nes (based on curre d/bailed dry?	lell (gallons) ent water leve No	5.3 ga 1) 3	e - <u>-</u>			
	Equipment used Bailer type Pump type If not dedic	Disposari			ed Bailer ed Bailer			
	D.) FIELD MEASUR	EMENT						
	Temperatur Equip pH Equip Specific Condition	nts (after stabilization of the stabilization of th	153° In): Un H COMPA CH COM Un HACH (=	my Po	CKET POCKE	FAL T PAL XET T	\	
	Comments	<u> </u>		····				
		boratory Report and vater monitoring poi					ll surface ar	nd

Site Name	AMES-STORY E	nvironmental	LANDFILL Permit N	10. <u>85</u> -	SDP-1	13-91P
Monitoring	Well/Piezometer No.	MW-35				
Name of pe	erson sampling	JMB	Downgra _	adie <u>nt</u>		
	A.) MONITORING W	ELL/PIEZOMETER	CONDITIONS			
	Well/Piezometer P	roperly Capped?	YES	Standing	Water or Litte Dla <u>in</u>	n No
	B.) GROUNDWATER	RELEVATION MEA	SUREMENT (+/- 0	.01 foot, MSL)	
	Elevation: Top of Depth of Well Equipment Used	inner well casing 20.6 50LINE	Inside Casing I		on <u>914.0</u> ches) z.o) \ "
	Groun	dwater Level (+/- 0.	01 foot below top o	of inner casing	, MSL):	
		Date/Time	Depth to Groundy		Groundwat Elevation	er
	Before Purging *After Purging *Before Sampling	9/19/06 1:25 9/20/06 1:30	12.89 12.89 13:0	 		- -
	C.) WELL PURGING				•	
		r Removed from Wenes (based on curred/bailed dry?	ell (gallons) 24 nt water level) 3 No	1 gal		
	Pump type	DISPOSABLE	'Dec	ficated Bailer ficated Bailer		
	D.) FIELD MEASURE	EMENT				
	pH Equip Specific Condition	its (after stabilizations)	Units H COMPANY CH COMPAN Units ACH COMP	POCKET y POCKE ANY PO	PAL T PAL XET PA	
	Comments					
	NOTE: Attach Lat	oratory Report and	8-12" x 11" site pla	an showing lo	cations of all	surface and

groundwater monitoring points. One map per sampling round.

^{*}Omit if only measuring groundwater elevations.

ite Name	AMES-STORY EN	vironmental LA	NOFILL Permit No.	85- SDP-	13-91P
Monitoring \	Well/Piezometer No.	MW-36	Upgradient _ Downgradien	<u> </u>	
lame of pe	rson sampling	SMB			
	A.) MONITORING WEI	LL/PIEZOMETER CO	NDITIONS		
	Well/Piezometer Pro	perly Capped? <u>Y</u>	<u>=</u> 5	tanding Water or Litte yes, expla <u>in</u>	ir? No
	B.) GROUNDWATER	ELEVATION MEASU	REMENT (+/- 0.01 f	oot, MSL)	
	Elevation: Top of i Depth of Well Equipment Used	53.5	18.97 Ground Inside Casing Diame	d Elevation 947. eter (in inches) 2.0	
	Ground	vater Level (+/- 0.01 (foot below top of inn	er casing, MSL):	
		Date/Time	Depth to Groundwater	Groundwa Elevation	ter
	Before Purging *After Purging *Before Sampling	9/19/06 12:45	15.25 40.0 19.62		- -
	C.) WELL PURGING	•			
	Quantity of Water I No.of Well Volume Was well pumped/	Removed from Well (s (based on current v bailed dry?	gallons) 10:0 god vater level) 1:5	?	
	Pump type	D15posable ed, method of cleaning	'Dedicate 'Dedicate		
	D.) FIELD MEASUREM	MENT	•		
	pH Equipmons Specific Conditions	(after stabilization): 23 ent Used HACH ent Used HACH s (80	Units Company Poo	POCKET PAL	HL.
	Comments				
	NOTE: Attach Labo groundwal	ratory Report and 8-1 ter monitoring points.	2" x 11" site plan sh One map per sampl	owing locations of all ing round.	surface and

Site Name	AMES-STORY	Environmental	LANDFILL Permit No.	<u> ୫</u> 5-	SDP-	13-91P				
Monitoring	Well/Piezometer No	MW-37	Upgradient							
Name of pe	erson sampling	Jm3	Downgradie	nt						
	A.) MONITORING	WELL/PIEZOMETER	CONDITIONS							
	Well/Piezomete If no, explain	r Properly Capped? _		Standing V If yes, expl	Vater or Lit a <u>in</u>	ter? No				
•	B.) GROUNDWAT	ER ELEVATION MEA	SUREMENT (+/- 0.01	foot, MSL)						
	Elevation: Top of inner well casing 949.49 Ground Elevation 947.43 Depth of Well 30.6 Inside Casing Diameter (in inches) 2.0" Equipment Used 501.65T									
	Groundwater Level (+/- 0.01 foot below top of inner casing, MSL):									
	•	Date/Time	Depth to Groundwate	г	Groundwa Elevation					
	Before Purging *After Purging *Before Sampling	9/19/06 1:00	6.47 19.0 6.56							
	C.) WELL PURGI	NG		•						
	Quantity of Water Removed from Well (gallons) logal No.of Well Volumes (based on current water level) 2.4 Was well pumped/bailed dry?									
	Equipment us Bailer ty Pump ty If not de	pe Disposabl	'Dedicat	ed Bailer ed Bailer						
	D.) FIELD MEASU	JREMENT								
	Tempera	nents (after stabilization	Units H Company Po	CKET POCKE	PAL F PAL	A L				
	Comments									
	NOTE: Attach Laboratory Report and 8-12" x 11" site plan showing locations of all surface and groundwater monitoring points. One map per sampling round.									
	*Omit if only meas	uring groundwater ele	vations.							

Site Name	AMES-STORY EN	vironmental	LANDFIL	Permit No	<u> ୫</u> 5-	SDP-	13-0	71P
Monitoring	Well/Piezometer No.	MW-38	3	_Upgradient _				
Name of pe	erson sampling	JMB		Downgradie <u>r</u>	II V			
	A.) MONITORING WE	ELL/PIEZOMEȚER	CONDIT	IONS				
	Well/Piezometer Pr	operly Capped?_	YES	S	Standing \ f yes, exp	Vater or Lit la <u>in</u>	er? No	
	B.) GROUNDWATER	ELEVATION MEA	SUREME	ENT (+/- 0.01 f	oot, MSL)		
	Elevation: Top of Depth of Well Equipment Used	inner well casing 55'V 50'LIM'ST	Inside	59 Groun Casing Diam	d Elevation eter (in in	on 934. ches) Z.a		
	Ground	lwater Level (+/- 0	.01 foot b	elow top of inn	er casing	, MSL):		
		Date/Time		Depth to Groundwater		Groundwa Elevation		
•	Before Purging *After Purging *Before Sampling	9/10/06 10:05	ó	19·77 55·0 21·35	·			
	C.) WELL PURGING	•						
	Quantity of Water No.of Well Volum Was well pumped	Removed from Wes (based on currently)	lell (gallor ent water 469	1s) 9.3 gal level) 1.3 V				
	Equipment used: Bailer type Pump type If not dedica			-	ed Bailer ed Bailer			
	D.) FIELD MEASURE		۵					
	pH Equipn Specific Condition	s (after stabilization 17°C) nent Used HAC B. 21 nent Used HAC	on): H Con	Units Pary Poor Done Units Company	CKET POCKE	FAL T FAL XET F	À L	
	Comments		·		* . 	. <u>. </u>		••
	NOTE: Attach Lab	oratory Report and					l surface	and

Site Name	AMES-STORY	Environmental	LANDFIL	Permit No.	ଷ 5-	SDP-1	3-91P
Monitoring '	Well/Piezometer No	. mw-39		_Upgradient _ Downgradier	.		
Name of pe	erson sampling	JMB		. Downgradie <u>r</u>	11 /	 	
	A.) MONITORING	WELL/PIEZOMETER	CONDIT	IONS			
	Well/Piezometer	Properly Capped?	YES		Standing V f yes, expl	Vater or Litter a <u>in</u>	7 No
	B.) GROUNDWAT	ER ELEVATION MEA	SUREME	ENT.(+/- 0.01 1	foot, MSL)	·	
	Elevation: Top Depth of Well Equipment Us	30·2	935. Inside	93 Groun Casing Diam	d Elevation eter (in inc		.96
•	Gro	undwater Level (+/- 0.	01 foot b	elow top of inn	ner casing,	MSL):	
		Date/Time		Depth to Groundwater		Groundwate Elevation	er e
	Before Purging *After Purging *Before Sampling	9/19/06 10:3		16.81 22.0 17.02			
	C.) WELL PURGIN	IG .					
	No.of Well Vol	ater Removed from Wounes (based on curre ped/bailed dry?	ell (gallon ent water l No	s) 669a evel) 3	l		
	Pump ty	oe Disposable		_	ed Bailer ed Bailer		
	D.) FIELD MEASU			٥			
	Temperat Equ pH Equ Specific Cond	ents (after stabilization ure 17°C ipment Used HAC ipment Used HAC itions 1274	n): H Con CH C	Units Pary Po		FAL F PAL XET FA	
	Comments						
		aboratory Report and dwater monitoring poin					urface and

Site Name	AMES-STORY EN	vironmental	LANDEIL	_Permit No	85-	SDP - 13	-91F
Monitoring '	Well/Piezometer No.	MW-40		_Upgradient _			
Name of pe	erson sampling	AMB		Downgradien	t //_		
	A.) MONITORING WE	LL/PIEZOMETER	CONDIT	IONS			
-	Well/Piezometer Pro	pperly Capped?	YES		tanding W	/ater or Litter?	No
	B.) GROUNDWATER	ELEVATION MEA	SUREM	ENT (+/- 0.01 f	oot, MSL)		
	Elevation: Top of i Depth of Well Equipment Used	nner well casing 201 SULINST	933 ·c Inside	27 Ground Casing Diame	d Elevation eter (in inc	931·11 hes) z.o"	,
	Ground	water Level (+/- 0.0	01 foot b	elow top of inn	er casing,	MSL):	
		Date/Time		Depth to Groundwater		Groundwater Elevation	
	Before Purging *After Purging *Before Sampling	9/19/06 12:30		le:18 12:26 6:22			
		Removed from Wees (based on curre			· · · · · · · · · · · · · · · · · · ·		
	Equipment used: Bailer type Pump type If not dedica	D15posab		_ 'Dedicate _ 'Dedicate			
	D.) FIELD MEASURE	MENT					
	Temperature Equipm pH Equipm Specific Conditior	s (after stabilization 20°C) nent Used HACI 7'8	1): H CON	Units Pary Poor Dupony Units Company	CKET S POCKET	PAL PAL KET PAL	
	Comments						
	NOTE: Attach Labo	oratory Report and	8-12" x	11" site plan sh	nowing loca	ations of all sur	face and

groundwater monitoring points. One map per sampling round.

^{*}Omit if only measuring groundwater elevations.

Site Name	AMES-STORY	Environmental	LANDFILL Permit No.	<u> ୫</u> 5-	SDP-1	3-91P				
Monitoring '	Well/Piezometer No	. MW-4	/Upgradien Downgradi	t						
Name of pe	erson sampling	IMB	Downgrau	BIIL /						
	A.) MONITORING WELL/PIEZOMETER CONDITIONS									
	Well/Piezomete If no, explain	r Properly Capped?_	YES	_Standing \ _If yes, exp	Water or Litter	No				
	B.) GROUNDWATER ELEVATION MEASUREMENT (+/- 0.01 foot, MSL)									
	Elevation: Top Depth of Well Equipment Us		Inside Casing Dia	und Elevation Imeter (in-in	on 931.44 ches) z.o	<u> </u>				
	Gro	oundwater Level (+/- 0	.01 foot below top of i	nner casing	, MSL):	•				
		Date/Time	Depth to Groundwat	ter	Groundwate Elevation					
	Before Purging *After Purging *Before Sampling	9/19/06/10/4	15 <u>16.32</u> 32.12 0 16.39							
	C.) WELL PURGIN	NG ,	·							
	No.of Well Vo	ater Removed from W lumes (based on curro ped/bailed dry?	rell (gallons) 10ged ent water level) 2.1 No	2						
	rump ty	pe Disposable	Deut	ated Bailer ated Bailer						
	D.) FIELD MEASL	JREMENT .								
·	Temperal Equ pH Equ Specific Cond	nents (after stabilization lure ZOC) uipment Used HAC B: 3 uipment Used HAC uipment Used HAC	n): Units		FAL T PAL XET PA					
	Comments									
		Laboratory Report and				ırface and				

Site Name	AMES-STORY	Environmental	LANDFILLPE	ermit No.	<u>85-</u>	SDP-	13-91P
Monitoring '	Well/Piezometer No	MW-42		ogradient			
Name of pe	erson sampling	MB	סט	owngradie <u>nt</u>			
	A.) MONITORING	WELL/PIEZOMETER	CONDITION	IS			
	Well/Piezometel	r Properly Capped?_	YES	Sta	anding V /es, expl	Vater or Litt a <u>in</u>	er? No
	B.) GROUNDWAT	ER ELEVATION MEA	SUREMENT	(+/- 0.01 foo	ot, MSL)		
	Elevation: Top Depth of Well Equipment Us		Inside Ca	ising Diamet	er (in inc		
	Gro	oundwater Level (+/- 0	.01 foot below	v top of inne	r casing,	MSL):	
		Date/Time		epth to oundwater		Groundwa Elevation	ater
	Before Purging *After Purging *Before Sampling	9/22/06/10:3	0 <u> </u> 30 <u> </u>	19:15 37:57 B:76			-
	C.) WELL PURGIN	NG					
	No.of Well Vo	ater Removed from W lumes (based on curr ped/bailed dry?	/ell (gallons) ent water leve	10 gal			
	Equipment us Bailer ty Pump ty If not de	pe D15005ab		'Dedicated			
	D.) FIELD MEASL	JREMENT					
	Temperal Equ pH Equ Specific Cond	nents (after stabilization ture 16° continued HAC 8° 3 continued HAC litions 887	on): Ur H Compa CH Com Ur		POCKE POCKE	FAL T PAL XET F	\
	Comments	····		·			
		Laboratory Report and advater monitoring po					I surface and

Site Name	AMES-STORY EN	vironmental	LANDFIL	_Permit No	<u> ୫</u> 5-	SDP-	13-91P
Monitoring '	Well/Piezometer No.	mw-43		_Upgradient _ Downgradier	at .	,	
Name of pe	erson sampling	AMB.		- Downgradie	"		
	A.) MONITORING WE	LL/PIEZOMETER	CONDIT	IONS			
	Well/Piezometer Pro	operly Capped?	YES		Standing V f yes, exp	Vater or Litt la <u>in</u>	ter? No
	B.) GROUNDWATER	ELEVATION MEA	SUREME	ENT (+/- 0.01 1	foot, MSL)		
	Elevation: Top of i Depth of Well Equipment Used	inner well casing 28:13 504NS		Groun Casing Diam		n <u>938</u> , ches) z.c	
	Ground	water Level (+/- 0.	01 foot b	elow top of inr	ner casing	MSL):	
		Date/Time		Depth to Groundwater	•	Groundwa Elevation	
	Before Purging *After Purging *Before Sampling	9/21/06 3:00) [0	16.00 25.39 15.98			
	C.) WELL PURGING	'1					
	Quantity of Water No.of Well Volume Was well pumped	es (based on curre	nt water	s) <u>(o</u> . O evel) 3			
	Equipment used: Bailer type Pump type If not dedica	015posa5		_	ed Bailer ed Bailer		
	D.) FIELD MEASURE	MENT					
	Specific Condition	s (after stabilization ent Used HAC BO ent Used HAC is //SI	54° n): H Com CH Cs ACH	Units Pary Por Depart Units Company	POCKE	PAL T PAL XET F	}
	Comments						
	NOTE: Attach Labo groundwa	oratory Report and Iter monitoring poi					I surface and

FORM FOR SURFACE WATER SAMPLING

ite Name AMES-STORY FROM	ronmental Lander	<u>ப</u> Permit No	85-SDP-	13-916
fonitoring Well/Piezometer No.	5W-1	Date/Time	9/20/06 1	150
lame of person sampling	JM3			
A.) TYPE OF MONITORING F	TNIO		·	
Stream Road Ditch Drainage Ditch	Open Til Tile with Other			
B.) PURPOSE OF MONITORI				
Upstream Within Landfill	Downstro	eam		
C.) MONITORING POINT CO	NDITIONS			
General description/cond	dition of monitoring poin	nt		
Was monitoring point dry Was water flowing?	40% If yes, es	Too little wat stimate quantity stimate depth	er to sample? 3'w × 1'cl	No X 20ft/m
Was water discolored? Does water have odor? Was ground discolored? Litter present?	No No No No	If yes, descil If yes, descil If yes, descil If yes, descil	oe below. oe below.	
Comments				
D.) FIELD MEASUREMENT			·	
Weather Conditions	Sunny 58°			
Field Measurments (after Temperature Equipment Use pH Specific Conditions Equipment Use	19°C sed HACH COMPAN BIL sed HACH COMPA 913	Units Y POCKET Units MY POCKET	PAL T. PAL	
Comments				

NOTE: Attach Laboratory Report and 8-12" x 11" site plan showing locations of all surface and groundwater monitoring points. One map per sampling round.

Site Name AMES- STORY ENVI	ronmental Lan	PEILL Permit No.	85-10P	-13-916
Monitoring Well/Piezometer No.	SW-Z	Date/Time	9/20/06	2:40pm
Name of person sampling	JMB			
A.) TYPE OF MONITORING F	POINT			
Stream Road Ditch Drainage Ditch	Oper Tile v Othe	vith Riser		
B.) PURPOSE OF MONITOR	ING POINT			
Upstream Within Landfill	Down Othe	nstream		
C.) MONITORING POINT CO	NDITIONS			
General description/cond	dition of monitoring (
Was monitoring point dr Was water flowing?	YPL IT VES	Too little wat s, estimate quantity s, estimate depth	4'W X 6"A	No X ZOFI/M
Was water discolored? Does water have odor? Was ground discolored? Litter present? Comments	No No No No	If yes, descit If yes, descit If yes, descit	ne below. ne below.	
Comments				
D.) FIELD MEASUREMENT Weather Conditions	Sunny 58	<i>v</i>		
Field Measurments (aft Temperature Equipment Us pH Equipment Us Specific Conditions Equipment Us	18°C sed HACH Comp sed HACH Com 946	Units Pany Pocket Pany Pocket Units Pany Pocket	PAL PAL	
Comments	· · · · · · · · · · · · · · · · · · ·			

Site Name AMES-STORY ENVI	ronmental Lander	<u>ய</u> Permit No.	85-5DP.	-13-916
Monitoring Well/Piezometer No.	5W-3	Date/Time	9/20/06	
Name of person sampling	JMB			
A.) TYPE OF MONITORING F	POINT			·
Stream Road Ditch Drainage Ditch	Open Til Tile with Other			
B.) PURPOSE OF MONITORI	NG POINT	_		•
Upstream Within Landfill	Downstr	eam		•
C.) MONITORING POINT CO	NDITIONS			
General description/cond	dition of monitoring poir	nt		
Was monitoring point dry Was water flowing?	Iflyes, es	Too little war stimate quantity stimate depth		
Was water discolored? Does water have odor? Was ground discolored? Litter present?		If yes, desci	be below. be below.	
D.) FIELD MEASUREMENT Weather Conditions				
Field Measurments (afte Temperature Equipment Us pH Equipment Us Specific Conditions Equipment Us	er stabilization): ed HACH Compan ed HACH Compa	Units Y FOCKET Units NY POCKET		
Comments				

Site Name AMES- STORY ENVI	ronmental LA	Permit No.	85-SDP-13-91P
Monitoring Well/Piezometer No.	SW-4	Date/Time	9/20/06
Name of person sampling	JMB		
A.) TYPE OF MONITORING F	POINT		
Stream Road Ditch Drainage Ditch	Tile Oth	en Tile with Ris <u>er</u> er	
B.) PURPOSE OF MONITORI	NG POINT		
Upstream Within Landfill	Dov Oth	vnstreamer	
C.) MONITORING POINT CO	NDITIONS		
General description/cond	dition of monitoring	point	
Was monitoring point dry Was water flowing?	lf ye	es, estimate quantity	ter to sampl <u>e?</u>
Was water discolored? Does water have odor? Was ground discolored? Litter present?	<u></u>	If yes, desci	be below. be below.
Comments			
D.) FIELD MEASUREMENT Weather Conditions			
Field Measurments (afte Temperature Equipment Us pH Equipment Us Specific Conditions Equipment Us	ed HACH Com	Units PANY POCKET WPANY FOCKET Units WPANY POCKET	PAL PAL T PAL
Comments			

Site Name AMES- STORY FOUR	CONNENTAL LANDE	Permit No.	85-50P-	-13-916
Monitoring Well/Piezometer No.	5W-5	Date/Time	9/20/04	· ·
Name of person sampling	JMB			
A.) TYPE OF MONITORING P	OINT			
Stream Road Ditch Drainage Ditch	Open T Tile wit Other	ile h Ris <u>er</u>		
B.) PURPOSE OF MONITORI	NG POINT			**
Upstream _ Within Landfill _	Downst	tream		
C.) MONITORING POINT CO	NDITIONS			
General description/cond	lition of monitoring po	int		
Was monitoring point dry Was water flowing?	If yes, e	estimate quantity		
Was water discolored? Does water have odor? Was ground discolored? Litter present?		If yes, desci	be below. be below.	÷
Comments				
D.) FIELD MEASUREMENT Weather Conditions				
Field Measurments (after Temperature Equipment Us pH Equipment Us Specific Conditions Equipment Us	ed HACH COMPA	Units MY FOCKET MY FOCKET Units ANY POCKET	PAL PAL T. PAL	
Comments				

Site Name AMES-STORY FRUIT	TOMENTAL LANDE	Permit No.	85-50P	-13-910
Monitoring Well/Piezometer No	Sus-6	Date/Time	9/20/00	, 10:10
Name of person sampling	JMB.			
A.) TYPE OF MONITORING P	OINT			
Stream Road Ditch Drainage Ditch	Open T Tile witl Other			
B.) PURPOSE OF MONITORII				
Upstream Within Landfill	Downst Other	ream 🗸		
C.) MONITORING POINT CON	NDITIONS			i
General description/cond	ition of monitoring poi	int		
Was monitoring point dry Was water flowing?	199 If yes, e	Too little watestimate quantity	er to sample?	No
Was water discolored? Does water have odor? Was ground discolored? Litter present?	No No Yes - Rust No	If yes, descib If yes, descib If yes, descib If yes, descib	e below. e below.	
Comments				
D.) FIELD MEASUREMENT				
Weather Conditions _	Sunny 58°			
Field Measurments (afte Temperature Equipment Use pH Equipment Use Specific Conditions Equipment Use	17°C ed Hach Compar B'Z ed Hach Comp 1415	Units MY POCKET Units MY POCKET	Pal Pal Pal	
Comments				

APPENDIX D

Concentration Versus Time Tables & Graphs

APPENDIX D.1

Concentration Versus Time Tables & Graphs
Water Table System

	MEAN+ WATER TABLE WELLS															
		ACTION	2 STD	U.G.W	D.G.W	D.G.W	D.G.W	D.G.W	D.G.W	BOTH	BOTH	BOTH	вотн	D.G.W	D.G.W	D.G.W
DATE	PARAMETER	LEVEL	wt	MW-37	MW 6	MW 28	MW 23	MW 24	MW 31	MW 25	MW 33	MW 34	MW35	MW 39	MW 40	MW 43
	ug/L		·													
04/23/91	1,1-Dichloroethene *	7	1			<1	<1	<1	<1	<1	_	<1				
10/15/91	1,1-Dichloroethene *	7	1			<1	<1	_	<1	<1		<1				
01/23/92	1,1-Dichloroethene *	7	1			<1	<1	_	<1	<1	<1	<1				
03/23/92	1,1-Dichloroethene *	7	1			<1	<1	<1	<1	<1	<1	<1				
09/30/92	1,1-Dichloroethene *	7	1			NT	NT	NT	NT	NT	NT	NT				
	1,1-Dichloroethene *	7	1			NT	NT	NT	NT	NT	NT	NT				
	1,1-Dichloroethene *	7	1			NT	NT	NT	NT	NT	NT	NT				
	1,1-Dichloroethene *	7	1			NT	NT	NT	NT	NT	NT	NT				
	1,1-Dichloroethene *	7	1			NT	NT	NT	NT	NT	NT	NT				
	1,1-Dichloroethene *	7	1			NT	NT	NT	NT	NT	NT	NT				
	1,1-Dichloroethene *	7	1			NT	NT	NT	NT	NT	NT	NT	_			
	1,1-Dichloroethene *	7	1	<1		NT	NT	NT	NT	NT	NT	NT	<1			
	1,1-Dichloroethene *	7	1	<1		NT	NT	NT	NT	NT	NT	NT	<1			
	1,1-Dichloroethene *	7	1	<1		NT	NT	Dry	NT	NT	NT	NT	<1			
	1,1-Dichloroethene *	7	1	NT		NT	NT	NT	NT	NT	NT	NT	NT			
	1,1-Dichloroethene *	7	1	<1		<1	NT	NT	NT	NT	NT	NT	<1			
	1,1-Dichloroethene *	7	1	NT		NT	NT	DRY	NT	NT	NT	NT	NT			
	1,1-Dichloroethene *	7	1	NT		NT	NT	DRY	NT	NT	NT	NT	NT			
	1,1-Dichloroethene *	7	1	NT		NT.	NT	DRY	NT	NT	NT	NT	NT			
	1,1-Dichloroethene *	7	1	NT		NT	NT	DRY	NT	NT	NT	NT	NT			
	1,1-Dichloroethene *	7	1	NT		NT	NT	DRY	NT	NT	NT	NT	NT			
	1,1-Dichloroethene *	7	1	NT		NT	NT	DRY	NT	NT	NT	NT	NT			
	1,1-Dichloroethene *	7	1	NT	<1	NT	NT	DRY	NT	NT	NT	NT	NT	<1	<1	<1
	1,1-Dichloroethene *	7	1	NT	NT	<1	NT	DRY	NT	NT	NT	NT	DRY	<1	<1	<1
	1,1-Dichloroethene *	7	1	NT	<1	NT	NT	DRY	NT	NT	NT	NT	NT	<1	<1	<1
	1,1-Dichloroethene *	7	1	NT	<1	<1	NT	NT	NT	NT	NT	NT	NT	<1	<1	<1
	1,1-Dichloroethene *	7	1	NT	NT	<1	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
	1,1-Dichloroethene *	7	1	NT	NT	<1	NT	Dry	NT	NT	NT	NT	NT	NT	NT	NT
	1,1-Dichloroethene	7	1	NT	NT	NT	NT	Dry	NT	NT	NT	NT	NT	NT	NT	NT
	1,1-Dichloroethene *	<u>′</u>	1	NT	NT	NT	NT	Dry	NT	NT	NT	NT	NT	NT	NT	NT
	1,1-Dichloroethene	<u>′</u>	1	NT NT	NT NT	NT	NT	Dry NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT	NT
	1,1-Dichloroethene *	<u>′</u>]	NT NT	NT NT	NT	NT NT	NT NT	NT	NT NT	NT NT	NT	NT NT	NT NT	NT	NT
	1,1-Dichloroethene *	7	1			NT		NT NT	NT	NT NT	NT.	NT	NT	NT NT	NT	NT
	1,1-Dichlaroethene *	<u>′</u>]	NT	NT	NT	NT	DRY	NT	NT	NT	NT	NT	NT	NT	NT NT
	1,1-Dichloroethene *	<u>′</u>	1	NT	NT	NT	NT								NT	
	1,1-Dichloroethene *	7	1	NT NT	NT	NT	NT	DRY DRY	NT	NT NT	NT	NT NT	NT	NT	NT	NT
J9/22/2006	1,1-Dichloroethene *	7	1	NI	NT	NT	NT	DKY	ИT	NI	NT	NI	NT	NT	NT	NT
	Mean			ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERF
	Standard Deviation (STD)			ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERF
	Mean + 2 STD			ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR

яяз	ਸ਼ਖ਼ਤ	ЕВВ	ВЯЗ	ЕВВ	ЕВВ	яяз	ERR	883 E88	ЕКК	ВВ	원원크	883			Vean + 2 STD	1
	993	яяз	EBR	EBB	яяэ	ERR	яяэ	893	яяз	ERR	яяз	яяз			(GTC) noistive Drabnata	
RRR	яяз	되지크	яяз	883	ERR	FRR	яяэ	яяз	яяз	RRA	яяз	883			nsəh	¥
ΤN	ΔN	TM	TN	TN	ΤN	TN.	LΝ	YAG	ТИ	ΔN	LΝ	ΤN	ı	200	* ensrteonoldpirT-f,f,f	9002/22/60
TN	ΤN	TN	TN	ΤN	ŢN	ĹΝ	TN	YAO	ΤN	1N	TN	TN	l.	200	1,1,1-Trichlomethane	9002/17/2006
TN	ΤN	TN	TN	ΤN	ΤN	TN	TN	NAC	TN	TN	TN	TN	L	200	* ansitismothanT-f,f,f	09/22/2005
TN	TN	TN	TΝ	TN	ΤN	1N	ΤN	TN	TΝ	TN	TN	TN	L	200	* 1,1,1-Trichloroethane	
ΤN	TN	TN	ΤN	TN	TN	TN	ΤN	TN	TN	TN	TN	1N	L	200	* 1,1,1-Trichloroethane	
ΤN	TN	TN	TN	ΤN	TN	TN	TN	ΤŅ	TN	TN	, LN	TN	L	200	*,1,1-Trichloroethane	
TN	TN	TN	TN	TN	TN	TN	TM	ŲQ	TN	TN	TN	TM	L	200	* 1,1,1-Trichtoroethane	
TN	TN	ΙN	1N	TN	TN	TN	TN	ίď	TΝ	1N	ΤN	ΤN	L	200	* 1,1,1-Trichloroethane	
ΤN	TN	TN	TN	TN	TN	ΤN	TN	Ņα	TN	TN	TN	ΤN	Į.	200	1,1,1-Trichlomethane	
TN	TN	TN	TN	ΤN	TN	TN	TN	λia	ΤN	L>	TN	TN	1	200	1,1,1-Trichlomethane	
TN	LΝ	TN	ΤN	TN	ΤN	ΤN	ΤN	TN	TN	Ļ>	TN	ΉN	1	200	1,1,1-Trichloroethane	
ا>	1>	L>	ΤN	TN	1N	TN	TN	ŤΝ	TN	Ļ>	Ļ>	ΤN	ı	200	1,1,1-Trichloroethane	
!>	L>	Ļ>	ΔN	TN	ΤN	TN	TN	۲ıa	ΤN	TN	۱>	TN	L .	200	1,1,1-Trichloroethane	
1>	L>	!>	DRY	TN	TM	±Ν	TN	YAO	ΤN	L>	'TN	TM	L	200	* ansitration of the first	
1>	!>	 >	±Ν	TN	TN	TN	ΤN	YAO	TN	TN	L>	ΤN	ı	200	* anertranothanT-f,f,f	
			TN	TN	TN	TN	TN	YAG	TN	ŦN		TN	l.	200	1,1,1-Trichloroethane *	
			TN	TN	TN	TN	TN	DRY	ΤN	TN		· TN	L	200	1,1,1-Trichloroethane	
			TN	TN	TN	TN	TN	YAG	ΤN	TN		TN	į.	200	* ansitration of the trans	
			TN	TN	TN	'TN	TN	NAG	TN	TΝ		TM	ı	200	* 9nsrteonothonT-f,f,f	
			ΤN	TN	TN	TN	TN	YAC	TΝ	TN		ΉN	L	200	1,1,1-Trichloroethane *	
			ΤN	TN	TN	TN	TN	YAG	TN	ΤN		ΤN	ŀ	200	* 1,1,1-Trichloroethane	
			l>	TN	TN	TN	TN	ΤŃ	TM	L>		1>	į.	200	1,1,1-Trichloroethane	
			ΤN	ΤN	TN	TN	TN	ŤΝ	TN	TN		ŤΝ	1	200	1,1,1-Trichloroethane	
			L>	TN	ΙN	1N	TN	Aa	ΤN	TN		!>	ŀ	200	1,1,1-Trichloroethane	
			۲>	TN	TΝ	TN	TN	TΝ	TN	ΤN		1>	F	200	1,1,1-Trichloroethane	
			1>	TΝ	TN	TN	TN	TN	ΤN	ΤN		l>	ŀ	200	* enstiteonothanT-f,f,f	
				TΝ	TN	TΝ	TN	TN	ΤN	TN			į.	200	1,1,1-Trichlonethane	
				TN	TM	TN	TN	TN	ΤN	TN			1	200	1,1,1-Trichloroethane	
				TN	τN	TN	TN	TM	ΤN	TN			•	200	1,1,1-Trichloroethane	
				TN	TN	TN	ΤN	TN	TN	TN			ŀ	200	* enstiteonoldon T-f,f,f	
				TΝ	TN	TN	TN	TN	ΉN	TN			ļ.	200	* 1,1-Trichlonethane	
				TN	TM	TN	ТИ	TN	TN	TN			L	200	* ansrteonothanT-f,f,f	
				TN	TM	TN	TN	TN	TN	TN			ı	200	* 1,1,1-Trichloroethane	
				!>	!>	1>	i>	L>	L>	t>			ŀ	200	1,1,1-Trichloroethane	
				L>	L>	1>	1>	_	۱>	!>			ŀ	200	* 1,1-Trichloroethane	
				L>	_	L>	L>	_	l>	!>			ļ.	200	1,1,1-Trichloroethane	
				1>	-	1>	1>	†>	1>	!>			1	200	* ansitteonothanī-1,1,1	16/22/90
															7/6 п	
WW 43	01× MW	65 WM	MW35	WW 34	WW 33	WM S2	MW 31	WW 24	MW 23	MW 28	9 MW	TE-WM	TW	LEVEL	ЯЗТЭМАЯАЧ	BTAO
D.G.W	D.G.W	D.G.W	HTOB	HTO8	HTOB	HT08	W.Đ.Q	W.Đ.Œ	D.G.W	W.Đ.O	W.Đ.đ	W.a.u	OTSS	NOITOA		1
								TE METTS	BAT RETAY	W			HEAN +	<u> </u>		<u> </u>

		T	MEAN +				WATER TAE	REWELLS							• • • • • • • • • • • • • • • • • • • •	
1		ACTION	2 STD	U.G.W	D.G.W	D.G.W	D.G.W	D.G.W	D.G.W	вотн	BOTH	ВОТН	ВОТН	D.G.W	D.G.W	D.G.W
DATE	PARAMETER	LEVEL	wt	MW-37	MW 6	MW 28	MW 23	MW 24	MW 31	MW 25	MW 33	MW 34	MW35	MW 39	MW 40	MW 43
PAIL	ug/L	1														
04/23/91	1.2-Dichloroethane *	5	0.4			<1	<1	<1	<1	<1		<1				
	1.2-Dichloroethane *	5	0.4			<1	<1		<1	<1		<1				
	1.2-Dichloroethane *	5	0.4			<1	<1		<1	<1	<1	<1				
	1.2-Dichloroethane *	5	0.4			<1	<1	<1	<1	<1	<1	<1				
	1,2-Dichloroethane *	5	0.4			NT	NT	NŤ	NT	NT	NT	NT				
	1.2-Dichloroethane *	5	0.4			NT	NT	NT	NT	NT	NT	NT				
	1,2-Dichloroethane *	5	0.4			NT	NT	NT	NT	NT	NT	NT				
	1.2-Dichloroethane *	5	0.4			NT	NT	NT	NT	NT	NT	NT				
	1.2-Dichloroethane *	5	0.4			NT	NT	NT	NT	NT	NT	NT				
	1.2-Dichloroethane *	5	0.4			NT	NT	NT	NT	NT	NT	NT				
	1,2-Dichloroethane *	5	0.4			NT	NT	NT	NT	NT	NT	NT				
	1.2-Dichloroethane *	5	0.4	<0.4		NT	NT	NT	NT	NT	NT	NT	<0.4			
	1,2-Dichloroethane *	5	0.4	<0.4		NΤ	NT	NT	NT	NT	NT	NT	<0.4			
	1.2-Dichloroethane *	5	0.4	<0.4		NT	NT	Dry	NT	NT	NT	NT	<0.4			
	1,2-Dichloroethane *	5	0.4	<0.4		NT	NΤ	DRY	NT	NT	NT	NT	<0.4			
06/18/97	1,2-Dichloroethane *	5	0.4	<0.4		<0.4	NT	NT	NT	NT	NT	NT	<0.4			
08/30/97	1,2-Dichloroethane *	5	0.4	NT		NT	NT	DRY	NT	NT	NT	NT	NT			
	1,2-Dichloroethane *	5	0.4	NT		NT	NT	DRY	NT	NT	NT	NT	NT			
09/21/98	1,2-Dichloroethane *	5	0.4	NT		NT	NT	DRY	NT	NT	NT	NT	NT			
03/18/99	1,2-Dichloroethane *	5	0.4	NT		NT	NT	DRY	NT	NT	NT	NT	NT			
03/21/99	1,2-Dichloroethane *	5	0.4	NT		NT	NT	DRY	NT	NT	NT	NT	NT			
03/21/2000	1,2-Dichloroethane *	5	0.4	NT		NT	NT	DRY	NT	NT	NT	NT	NT			
06/28/2000	1,2-Dichloroethane *	5	0.4	NT	<0.4	NT	NT	DRY	NT	NT	ΝT	NT	NT	<0.4	<0.4	<0.4
09/28/2000	1,2-Dichloroethane *	5	0.4	NT	NT	<0.4	NT	DRY	NT	NT	NT	NT	DRY	<0.4	<0.4	<0.4
12/27/2000	1,2-Dichloroethane *	5	0.4	NT	<0.4	NT	NT	Dry	NT	NT	NT	NT	NT	<0.4	<0.4	<0.4
	1,2-Dichloroethane *	5	0.4	NT	<0.4	<0.4	NT	NT	NT	NT	NT	NT	NT	<0.4	<0.4	<0.4
	1,2-Dichloroethane *	5	0.4	NT	NT	<0.4	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
	1,2-Dichloroethane *	5	0.4	NT	NΤ	<0.4	NT	Dry	NT	NT	NT	NT	NT	NT	NT	NT
	1,2-Dichloroethane *	5	0.4	NT	NT	NT	NT	Dry	NT	NT	NT	NT	NT	NT	NT	NT
	1,2-Dichloroethane *	5	0.4	NT	NT	NT	NT	Dry	NT	NT	NT	NT .	NT	NT	NT	NT
	1,2-Dichloroethane *	5	0.4	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
	1,2-Dichloroethane *	5	0.4	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
	1,2-Dichloroethane *	5	0.4	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
	1,2-Dichloroethane *	5	0.4	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
	1,2-Dichloroethane *	5	0.4	NT	NT	NT	NT	DRY	NT	NT	NT	NT	NT	NT	NT	NT
	1,2-Dichloroethane *	5	0.4	NT	NT	NT	NT	DRY	NT	NT	NT	NT	NT	NT	NT	NT
09/22/2006	1,2-Dichloroethane *	5	0.4	NT	NT	NT	NT	DRY	NT	NT	NT	NT	NT	NT	NT	NT
	Mean			ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR
	Standard Deviation (STD)			ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR
	Mean + 2 STD			ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR

588 ਵਲਲ ਵਲਲ	883 ਵਲਲ ਵਲਲ	E88 E88	ਦਲਲ ਵਲਲ ਵਲਲ	ЕКК ЕКК ЕКК	באא באא באא	באא באא באא באא	ERR ERR ERR	E88 E88	ЕВВ ЕВВ ЕВВ	ЕВВ ЕВВ ЕВВ	ERR ERR ERR	883 883 883			nsəM Sishdard Deviation (STD) GTS S + nsəM	3
TN	TN	ТИ	ŢΝ	ΔN	ŧМ	TN	TN	YAG	ΤN	TN	TN	TN	l.	51	* - Dichlorbenzene	08/22/2009
TN	ΤN	TN	ΤN	ΤN	TN	ΙN	ΤN	DRX	ŢN	TN	TN	TN	ı	94	1,4-Dichlorobenzene	
TN	TN	TN	ΤN	TN	TN	ΤN	TN	YAO	TN	TN	TN	TN	ı	6 7	1,4-Dichlorobenzene	
TN	TN	TN	TN	TN	TN	TN	TN	TN	ΤN	TM	TN	TN	L	94	* 4-Dichlorobenzene	
TN	TN	TN	TN	TN	TN	TN	TM	TN	TM	TN	TN	TN	L	87	* eneznedorolhoid-P, f	
TN	TN	TN	TN	TN	TN	ΤN	ΤN	ŤΝ	ΤN	TN	ΤN	1N	L	92	1,4-Dichlorobenzene	
TN	ΙN	TN	ΤN	TN	ĹΝ	TN	TN	ýα	ΤN	TN	TN	TN	ı	94	* ensznadoroldoid-1-, r	
ŢΝ	ΤN	TN	ΤN	TN	TN	ΤN	TN	ρú	ΤN	TM	TN	TN	ı	94	* 9-Dichlorobenzene	
TN	TN	TN	TN	TN	TN	ΤN	TΝ	ρú	TN	ΤN	TN	TN	l.	94	* eneznedorolichiol-P, l	
TN	TN	TΝ	TN	TN	TM	TN	TM	TM	ΤN	L>	ТИ	TN	ı	94	* ensznedorolhoid-4, f	
TN	TM	TM	TN	TM	TM	TN	TN	TN	ΤN	۱>	TN	TM	į.	94	1,4-Dichlorobenzene	
1>	1>	l>	TN	TM	TN	TN	TN	ΤŃ	ΤN	L>	1>	TN	ı	94	1,4-Dichlorobenzene	
 ->	L>	۱>	TN	īN	TN	TN	TN	Dry	ΤN	ŤΝ	1>	ΤN	1	94	* 4-Dichloropensene	
!>	!>	1>	YAO	TN	TN	TN	ΤN	DRY	ΤN	ا>	TN	TN	<u>}</u>	94	* enexnedonoldoid-4,t	
1>	L>	1>	TN	TN	TN	TN	ΤN	YAO	TN	TN	L>	TN	ŀ	94	* enexnedonoldbid-4,f	
			TN	TN	TN	TN	TN	YAG	ΤN	TN		ΤN	ŀ	97	• eneznedonoldoid-+, f	
			TN	TN	TN	ΤN	ΤN	DRY	TN	TN		TN	ŀ	92	* anaznadoroldoiQ-4,f	
			TN	TN	TN	TN	TN	YAC	ΤN	TN		ΤN	ŀ	94	1,4-Dichlorobenzene	
			IN	TN	TN	TN	TN	YAC	TN	TN		TN	1	94	* eneznedoroldoid-4,t	
			TN	TN	TN	TN	TN	YAO	TN	TN		TN	<u> </u>	67	* eneznadoroldoiQ-4,f	
			TN	TN	ΤN	ΤN	TN	DRY	ΤN	TN		TN	ŀ	87	1,4-Dichlorobenzene	
			!>	TN	TN	TN	TN	TN	ŢN	ļ>		1>		97	*.Dichlorobenzene	
			TN	ΤN	TN	TN	TN	ŤΝ	ΤN	TN		TN		67	* anexnedonolicid-4,f	
			!>	TN	TN	TN	TN	ρù	ΤN	TN		1>		97	* 4-Dichlorobenzene	
			!>	TN	TN	TN	TN	TN	ΤN	ΤN		!>	•	21 21	* anasnadoroldzid-4,f	
			!>	ΤN	ΤŃ	TN	TN	TN	ΤN	TN TN		L>	!	87	* anasnadoroldziQ-4,f	
				TN	TN	TN TN	TN TN	TN TN	TM TM	TN TN				27 27	* eneznedmoldbiO-1-, f	
				TN	TN TN	TN TN	TN	TN	ŢN TV:	TN				92	* eneznedmoldbifl-b.t	
				TN TN	TN TN	TN	TN	TN	TN	TN			;	92	1,4-Dichlorobenzene	
				TN	TN	TN TV	TN	TN	TN	TN TA				27 27	1,4-Dichlorobenzene	
				TN	TN TN	TN TA	TN	TN	TN	TN			ř	9Z	1,4-Dichlorobenzene	
				TN	TN TN	TN	TN TN	TN TA	TN	TN			-	9Z	* 4-Dichlorobenzene	
				1>	1> TM	;>	7>	> 	!>	1>			7	9Z	1,4-Dichlorbenzene	
				1>	1>	1>	1>		1>	i>			7	92	1,4-Dichlorobenzene	
				i>	_	1>	i>	_	1>	1>			ř	27 27	1,4-Dichlorobenzene	
				1>	_	1>	l>	L>	l>	1>			7	9Z	1,4-Dichlorobenzene	
						•							,		7/6 n	
MW 43	WW 40	65 WM	SEWM.	MW 34	MW 33	WW 25	MW 31	MW 24	WW 23	MW 28	9 WW	TE-WM	TW	LEVEL	PARAMETER	3TAG
D.G.W	D'C'M	D.G.W	HT08	HTO8	HLOB	THTOB	D.G.W	D.G.W	D.G.W	D.G.W	D.G.W	W.B.U	anss	NOITOA		ľ
L								TE METTS	BAT RETAY	۸			+ NA3M			l

	1	1	MEAN +				WATER TA	BLE WELLS								
1		ACTION	2 STD	U.G.W	D.G.W	D.G.W	D.G.W	D.G.W	D.G.W	вотн	BOTH	BOTH	BOTH	D.G.W	D.G.W	D.G.W
DATE	PARAMETER	LEVEL	wr l	MW-37	MW 6	MW 28	MW 23	MW 24	MW 31	MW 25	MW 33	MIVV 34	MW35	MW 39	MW 40	MW 43
	mg/L								•							
04/23/91	Arsenic, dissolved	0.05	0.002			< 0.005	< 0.005	<0.005	<0.005	<0.005	_	<0.005				
10/15/91	Arsenic, dissolved	0.05	0.002			<0.005	< 0.005	_	<0.005	<0.005		<0.005				
01/23/92	Arsenic, dissolved	0.05	0.002			< 0.005	<0.005	_	<0.005	<0.005	<0.005	<0.005				
03/23/92	Arsenic, dissolved	0.05	0.002			<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005				
09/30/92	Arsenic, dissolved	0.05	0.002			NT	NT	NT	NT	NT	NT	NT				
03/05/93	Arsenic, dissolved	0.05	0.002			NT	NT	NT	NT	NT	NT	NT				
09/21/93	Arsenic, dissolved	0.05	0.002			NT	NT	NT	NT	NT	NT	NT				
03/23/94	Arsenic, dissolved	0.05	0.002			NT	NT	NT	NT	NT	NT	NT				
09/16/94	Arsenic, dissolved	0.05	0.002			NT	NT	NT	NT	NT	NT	NT				
03/16/95	Arsenic, dissolved	0.05	0.002			NT	NT	NT	NT	NT	NT	NT				
09/13/95	Arsenic, dissolved	0.05	0.002			NT	NT	NT	NT	NT	NT	NT				
03/28/96	Arsenic, dissolved	0.05	0.002	<0.005		NT	NT	NT	NT	NT	NT	NT	<0.005			
06/20/96	Arsenic, dissolved	0.05	0.002	<0.005		NT	NT	NT	NT	NT	NT	NT	<0.005			
09/13/96	Arsenic, dissolved	0.05	0.002	<0.005		NT	NT	Dry	NT	NT	NT	NT	<0.005			
03/19/97	Arsenic, dissolved	0.05	0.002	NT		NT	MΤ	NT	NT	NT	NT	NT	NT			
06/18/97	Arsenic, dissolved	0.05	0.002	0.002		<0.001	NT	NT	NT	NT	NT	NT	0.001			
08/30/97	Arsenic, dissolved	0.05	0.002	NT		NT	NT	DRY	NT	NT	NT	NT	NT			
03/10/98	Arsenic, dissolved	0.05	0.002	NT		NT	NT	DRY	NT	NT	NT	NT	NT			
09/21/98	Arsenic, dissolved	0.05	0.002	NT		NT NT	NT NT	DRY DRY	NT NT	NT NT	NT NT	NT NT	NT NT			
03/18/99	Arsenic, dissolved	0.05	0.002 0.002	NT NT		NT.	NT NT	DRY	NT	NT	NT	NT	NT NT			
09/21/99	Arsenic, dissolved	0.05 0.05	0.002	NT		NT	NT	DRY	NT	NT	NT	NT	NT			
	Arsenic, dissolved Arsenic dissolved	0.05	0.002	NT	<0.001	NT	NT	DRY	NT	NT	NT	NT	NT	0.001	<0.001	<0.001
	Arsenic, dissolved	0.05	0.002	NT	NT	<0.001	NT	DRY	NT	NT	NT	NT	DRY	0.001	<0.001	<0.001
	Arsenic, dissolved	0.05	0.002	NT	0.002	NT	NT	Dry	NT	NT	NT	NT	NT.	0.003	0.002	0.002
	Arsenic, dissolved	0.05	0.002	NT	<0.001	<0.001	NT	NT	NT	NT	NT	NT	NT	0.003	0.002	0.002
	Arsenic, dissolved	0.05	0.002	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
	Arsenic, dissolved	0.03	0.002	NT	NT	<0.001	NT	Dry	NT	NT	NT	NT	NT	NT	NT	NT
	Arsenic, dissolved	0.01	0.002	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
	Arsenic, dissolved	0.01	0.002	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
	Arsenic, dissolved	0.01	0.002	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
	Arsenic, dissolved	0.01	0.002	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
	Arsenic, dissolved	0.01	0.002	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
	Arsenic, dissolved	0.01	0,002	NT	NT	NT	NT	NT	NT	· NT	NT	NT	NT	NT	NT	NT
09/22/2005	Arsenic, dissolved	0.01	0.002	NT	NT	NT	NT	DRY	NT	NT	NT	NT	NT	NT	NT	NT
03/17/2006	Arsenic, dissolved	0.01	0.002	NT	NT	NT	NT	DRY	NT	NT	NT	NT	NT	NT	NT	NT
09/22/2006	Arsenic, dissolved	0.01	0.002	NT	NT	NT	NT	DRY	NT	NT	NT	NT	NT	NT	NT	NT
	Mean Standard Deviation (STD)			, 0.002 0	0.002	ERR	ERR ERR	ERR	ERR ERR	ERR	ERR ERR		0.001 0	0.00175 0.000829	0.0015 0.0005	0.002 0
	Mean + 2 STD			0.002	0.002	ERR	ERR	ERR	ERR	ERR	ERR	ERR	0.001	0.003408	0.0025	0.002

	<u> </u>		<u>,</u>						pe	VIOSSID else webst						
27504.0 2070S1.0 2010S49.0	1.0 649700.0 76S311.0	87080.0 108410.0 \$38980.0	2881.0 261810.0 287812.0	01.0 967730.0 874912.0	90.0 800.0 70.0	786201.0 18180.0 745625.0	0,15125 0,008684 814881.0	2841.0 2950.0 2755.0	0.1395 382410.0 278831.0	8260.0 9400.0 826890.0	6,325333 6,5200.0 568366.0	2440.0 2400.0 3520.0			Mean Standard Deviation (STD) GTS S + nseM	
ΤN	TΝ	TΝ	ΤN	и	ТИ	TN	אד	DRY	ΤN	ΤN	ΤN	TN	Þ\$0:0	2.000	Banum, dissolved	9002/22/6
TN	1N	ĪN	TN	IN	IN	ĪN	TN .	DRY	IN	ĪN	ĪN	TN	5 0.0	000.Z	Banum, dissolved	3/17/2006
TN	TN	TN	TN	TN	TN	ΤN	TN	DBX	TN	TN	ΤN	TM	₽ 90.0	2,000	Barium, dissolved	9/22/2005
TN	ŤΝ	ŤΝ	ΤN	TN	TN	TN	TN	TN	TN	TN	TN	TN	1 20.0	2,000	Barium, dissolved	3/17/2005
ŤΝ	ΤN	TN	TN	TN	TN	ТИ	ΤN	TN	TN	TN	TN	TN	5 0.0	2.000	Barium, dissolved	9/27/2004
TN TN	TN TV	ΤN	TN	ΤŃ	TN	ΤN	ΤN	уд ТИ	TN TN	TN	ΤN	TN	450.0	2.000	Barium, dissolved Barium, dissolved	3/08/2003
TN TA	TN TM	TN TN	TN TN	TM TM	TN TN	TN TN	TN TN	λα	TN TV	TM TM	TM TM	TN TN	₽90.0 ₽90.0	2.000	Barium, dissolved	3/14/2003
ŢŅ.	TN	TN	TN	TN TA	TN TV	TN	TN	λα	TN	TN	TN	TN	\$20.0 \$30.0	2.000	Barium, dissolved	2002/11/6
TN	IN	ŢŅ	TN	TN	TN TIA	TN	TN	Αď	ŢN	240.0	TN	TN	\$20.0	2.000	Banum, dissolved	3/19/2002
TN	ĬN.	IN	TN	IN	TN	TN TV	TN	TN	ŢN	TN	ŢN	TN	30.0	2.000	Barium, dissolved	1002/20/6
0.210	001.0	820.0	ĪŅ	TN	ŢŊ	TN	TN	TN	ΤΝ	6.035	815.0	ŢŃ	PS0.0	2.000	Barium, dissolved	3/28/2001
0.530	601.0	790.0	TN	IN	TN	TN	TN	цλ	TN	TN	826.0	TN	P 90.0	2,000	Barium, dissolved	2/27/2000
674,0	880.0	6.039	YAG	TN	TN	TN	TN	DYY	TN	960.0	TN	ΤN	1 90'0	2,000	Barium, dissolved	0002/82/6
Z04.0	601.0	670.0	TN	TM	TN	TN	TN	DBX	TN	TM	0.330	TN	₽ 90.0	2.000	Barium, dissolved	6/28/2000
			ΤN	TN	TN	TN	TN	DBX	TN	TM		TN	₽ 9 0.0	2.000	Barium, dissolved	3/21/2000
			TN	TN	ΙN	ΤN	TN	YAO	TN	TN		TN	1 20.0	2.000	Barium, dissolved	66/12/60
			ΤN	ΤN	TN	ΤN	ΤN	YAG	ΤN	ΤN		ΤN	₽ 90'0	2.000	Barium, dissolved	66/81/60
			TN	TN	ΤN	TN	TN	DRY	TN	TN TN		ΤN	PC0:0	2.000	Barium, dissolved Barium, dissolved	86/12/60
			TN TN	TM TN	TN TN	TN TN	TN TN	YRO VRO	TN TN	TN		TN TN	₽\$0.0 ₽\$0.0	2.000	Barium, dissolved	76/05/80
			331.0 TA	TN	TN TN	TN TV	TN	TN VOC	ΤΝ Τ.	920.0		650.0	P20.0	2.000 2.000	Barium, dissolved	26/81/90
			TN	אד	TN TA	TN TA	TN	TN TV	TN	IN		TN	PS0.0	2,000	Barium, dissolved	26/61/80
			112.0	ŢŅ	ĬN	· IN	TN	ρΩ	TN	TN.		91-0.0	50.0	2.000	Banum, dissolved	96/21/60
			781.0	ΔN	TN	TN	ĹΝ	ΙN	ΤN	ΤN		0.042	990'0	000.S	Barium, dissolved	96/07/90
			\$81.0	TN	TN	ΤN	ΤN	TN	TN	TN		120.0	₽ 90'0	2.000	Barium, dissolved	96/8Z/20
				TN	TN	TN	±Ν	TN	TN	TN			5 0.0	2.000	Barium, dissolved	96/81/60
				TN	ŦN	TN	TN	TN	TN	TN			PS0.0	2,000	Barium, dissolved	96/91/80
				TN	TN	TN	TN	TN	TM	TN			1 50.0	2,000	Barium, dissolved	16/91/60
				TN	TM	TN	TN	TN	TN	TN			PS0.0	2.000	Barium, dissolved Barium, dissolved	03/23/94
				TN TN	TN TN	TN TN	TN TN	TN TN	TN TN	TM TM			₽90.0 ₽90.0	2.000	Barium, dissolved	£6/12/60 £6/90/£0
				TN TN	TN	TN	TN	TN TN	TN	TN			₽90.0	2,000	Banum, dissolved	26/30/60
				20.0	250.0	820.0	861.0	881.0	311.0	050.0			PS0.0	000.S	Banum, dissolved	03/53/65
				£90.0	290.0	880.0	651.0		241.0	650.0			₽S0.0 ₽30.0	000.S	Barium, dissolved	26/23/10
				0.200	_	661.0	0.152	-	441.0	0,040			PS 0.0	2,000	Barium, dissolved	16/51/01
				860.0	-	41.0	S91.0	601.0	931.0	220.0			\$ 90.0	2.000	mg/L Barium, dissolved	16/23/40
WW 43	MW 40	WW 39	WW35	WW 34	EE WW	WW 25	MW 31	WM 5¢	MW 23	MW 28	9 MW	7£-WM	TW	LEVEL	PARAMETER	3TAQ
W.Đ.CI	D.G.W	D.G.W	TTO8	HTO8	HTO8	HT08	D'C'M	D.G.W	D.G.W	W.Đ.đ	D.G.W	W.e.U	GTSS	ИОПОА		
								TE METTS	BAT RETAY	\			+ NA3M			

	MEAN + WATER TABLE WELLS															
1	1	ACTION	2 STD	U.G.W	D.G.W	D.G.W	D.G.W	D.G.W	D.G.W	BOTH	BOTH	BOTH	BOTH	D.G.W	D.G.W	D.G.W
DATE	PARAMETER	LEVEL	wr	MW-37	MW 6	MW 28	MW 23	MW 24	MW 31	MW 25	MW 33	MW 34	MW35	MW 39	MW 40	MW 43
DATE	ug/L	45725														
04/23/91	Benzene *	5	1			<1	<1	<1	<1	<1		<1				
10/15/91	Benzene *	5	i			<1	<1		<1	<1		<1				
01/23/92	Benzene *	5	•			<1	<1		<1	<1	<1	<1				
03/23/92	Benzene *	5	i			<1	<1	<1	<1	<1	<1	<1				
09/30/92	Benzene *	5	1			NT	NT	NŤ	NT	NT	NT	. NT				
03/05/93	Benzene *	5	i .			NT										
09/21/93	Benzene *	5	1			NT										
03/23/94	Benzene *	5	1			NT										
09/16/94	Benzene *	5	1			NT										
03/16/95	Benzene *	5	1			NT										
09/13/95	Benzene *	5	1			NT										
03/28/96	Benzene *	5	1	<1		NT	<1									
06/20/96	Benzene *	5	1	<1		NT	<1									
09/13/96	Benzene *	5	i	<1		NT	NT	Dry	NT	NT	NT	NT	<1			
03/19/97	Benzene *	5	1	NT		NT	NT	NŤ	NT	NT	NT	NT	NT			
06/18/97	Benzene *	5	1	<1		<1	NT	NT	NT	NT	NT	NT	<1			
08/30/97	Benzene *	5	1	NŤ		NT	NT	DRY	NT	NT	NT	NT	NT			
03/10/98	Benzene *	5	i	NT		NT	NT	DRY	NT	NT	NT	NT	NT			
09/21/98	Benzene *	5	1	NT		NT	NT	DRY	NT	NT	NT	NT	NT			
03/18/99	Benzene *	5	i	NT		NT	NT	DRY	NT	NT	NT	NT	NT			
09/21/99	Benzene *	5	1	NT		NT	NT	DRY	NT	NT	NT	NT	NT			
03/21/2000	Benzene *	5	1	NT		NT	NT	DRY	NT	NT	NT	NT	NT			
06/28/2000	Benzene *	5	1	NT	<1	NT	NT	DRY	NT	NT	NT	NT	NT	<1	<1	<1
09/28/2000	Benzene *	5	1	NT	<1	<1	NT	DRY	NT	NT	NT	NT	DRY	<1	<1	<1
12/27/2000	Benzene *	5	1	NT	<1	NŤ	NT	Dry	NT	NT	NT	NT	NT	<1	<1	<1
03/28/2001	Benzene *	5	1	NT	<1	<1	NT	NŤ	NT	NT	NT	NT	NT	<1	<1	<1
09/02/2001	Benzene *	5	1	NT	NT	<1	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
03/19/2002	Benzene *	5	1	NT	NT	<1	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
09/19/2002	Benzene *	5	1	NT	ΝŤ	NT	NT	NT	NT	NT						
03/14/2003	Benzene *	5	1	NT	NT	NT	NT	NT								
09/29/2003	Benzene *	5	1	NT	NT	NT	NT	NT								
03/08/2004	Benzene *	5	1	NT	NT	NT	NT	NT								
09/27/2004	Benzene *	5	1	NT	NT	NT	NT	NT								
03/17/2005	Benzene *	5	1	NT	NT	NT	NT	NT								
09/02/2005	Benzene *	5	1	NT	NT	NT	NT	DRY	NT	NT	NT	NT	NT	NT	NT	NT
03/17/2006	Benzene *	5	1	NT	NT	NT	NT	DRY	NT	NT	NT	NT	NT	NT	NT	NT
09/22/2006	Benzene *	5	1	NT	NT	NT	NT	DRY	NT	NT	NT	NT	NT	NT	NT	NT
	Mean			ERR	ERR	ERR	ERR	ERR								
	Standard Deviation (STD)			ERR	ERR	ERR	ERR	ERR								
	Mean + 2 STD			ERR	ERR	ERR	ERR	ERR								

ЕКК ЕКК ЕКК	E88 E88 E88	EKK EKK EKK	883 883 883	E88 E88 E88	883 883 888	BRR	екк екк екк	ЯЯЗ ЯЯЗ ЯЯЗ	883 883 883	883 888 888	883 883 883	588 588 588			Mean Standard Deviation (STD) Standard Deviation (STD) Mean + 2 STD	
ΤN	LΝ	ΤN	ΙN	ΤN	ТИ	ΙN	ΙN	NRV	ΙN	ΙN	ΙN	ΤN	100.0	500.0	Cadmium, dissolved	09/22/2006
TN	TN	ΤN	TN	1N	TN	TN	TN	DKY	ΙN	ΙN	TN	ŢŃ	100.0	200.0	Cadmium, dissolved	03/17/2006
TN	.LN	TN	TN	ΔN	ΤN	TN	1N	YAG	LΝ	ΤN	LΝ	TM	100.0	500.0	Cadmium, dissolved	09/22/2005
TN	ΤN	ΤN	ΤN	TN	ΤN	ΔN	ΔN	TN	ΤN	TN	ΤN	ŦN	100.0	200.0	Cadmium, dissolved	03/17/2005
TM	TN	TN	TN	TN	ΤN	TN	ΉN	TN	TN	TN	TN	TN	100.0	600.0	Cadmium, dissolved	09/27/2004
TN	TN	ΉN	TN	ΤN	ΤN	TN	TN	TN	TN	TN	TN	ΤN	100.0	0.005	Cadmium, dissolved	03/08/2004
TN	TN	TN	TN	TN	ТИ	ΤN	TN	TN	TN	TN	TN	TN	100.0	600.0	Cadmium, dissolved	09/29/2003
TN	TN	ΤN	TN	TN	TN	TN	TN	TN	TN	TN	TN	TN	100.0	600.0	Cadmium, dissolved	03/14/2003
TM	TN	TN	ΤN	TN	TN	ΤN	ΤN	TN	TN	TN	TN	TN	100.0	600.0	Cadmium, dissolved	
TN	ΤN	TN	TN	ΤN	TN	TN	TN	TN	TN	100.0>	TN	TN	100.0	0.005	Cadmium, dissolved	
100.0> TN	100.0> TN	100.0> TN	ΤN	TN	1N	TN	TN	1N	TN	TN	TN	TN	100.0	200.0	Cadmium, dissolved Cadmium, dissolved	1002/20/60
100.0>	100.0>	100.0>	TN TN	TN TN	TN TN	TN TN	TN TN	γΩ TN	TN TN	TN 100.0>	100.0> 100.0>	TN TV:	100.0 100.0	200.0 200.0	Cadmium, dissolved	12/27/2000
100.0>	100.0>	100.0>	TN TIN	TN TA	TN TN	TN	TN	אטם	TN	100.0>	100.0>	TM	100.0	200.0	Cadmium, dissolved	0002/22/20
100.0>	100.0>	100.0>	TN	IN	TN	TN	TN	DRY	TN TA	TN	100.0>	TN	100.0	300.0	Cadmium, dissolved	06/28/2000
, , , ,	7000	700 0-	TN	TN	TN	ΤΝ	ΤN	DBA	TN	TN	P00 0-	TN	100.0	200.0	Cadmium, dissolved	03/21/2000
			ŢŅ	TN	TN	TN	ΤΝ	DRY	TN	ŢŅ		IN	100.0	300.0	Cadmium, dissolved	08/1/30
			TN .	ŢN	ĪŅ	ĪŅ	ŢŅ	DRY	ŢŅ	ĪN		IN	100.0	200.0	Cadmium, dissolved	66/81/60
			TN	TN	ΤΝ	TN	TN	DRY	TN	TN	-	IN	100.0	200.0	Cadmium, dissolved	86/12/60
			TN	TN	TN	TN	TN	DBA	TN	TN		TN	100.0	200.0	Cadmium, dissolved	86/01/60
			TN	ΙN	TN	ΤN	ΤN	YAG	TN	ΔN		TN	100.0	900.0	Cadmium, dissolved	76/05/80
			100.0>	ΤN	ΤN	TN	TN	ΤN	TN	100.0>		100.0>	100.0	900'0	Cadmium, dissolved	76/81/90
			100.0>	TN	TN	TN	TN	YAG	TN	TN		100.0>	100.0	600.0	Cadmium, dissolved	76/61/50
			100.0>	IN	TN	ŦN	TN	VIG.	TN	TN		<0.001	100.0	200.0	Cadmium, dissolved	96/13/96
			100.0>	TN	TN	TN	TN	TN	1N	TN		100.0>	100.0	200.0	Cadmium, dissolved	96/07/90
			100.0>	ΤN	ΤN	TN	TN	TN	TN	TN		100.0>	100.0	200.0	Cadmium, dissolved	96/82/60
				TN	ΤN	TN	TN	TN	TN	TN			100.0	800.0	Cadmium, dissolved Cadmium, dissolved	96/21/60
				TN TM	TN TN	TN TN	TN TN	77 7A	TN TN	TN TN			100.0 100.0	200.0 0.005	Cadmium, dissolved	56/31/50 03/16/94
				TN	TN	TN TA	TN	TN	TN	TN TN			100.0	200.0	Cadmium, dissolved	03/53/94
				TM	TN TV	TN TA	TN	TN TN	TN TN	TN TA			100.0	200.0	Cadmium, dissolved	08/23/83
				TN	TN	TN	TN	TN	TN	TN			0.001	200.0	Cadmium, dissolved	03/02/83
				TN TV	TN	TN TA	TN TA	ŢN	TN	TN			100.0	200.0	Cadmium, dissolved	09/30/92
				100.0>	100.0>	100.0>	100.0>	100.0>	100.0>	100.0>			100.0	200.0	Cadmium, dissolved	03/23/92
				100.0>	100.0>	100.0>	100.0>	_	100.0>	100.0>			100.0	200.0	Cadmium, dissolved	26/52/10
				100.0>	_	100.0>	100.0>	_	100.0>	100.0>			100.0	200.0	Cadmium, dissolved	16/21/01
				100.0>		100.0>	100.0>	100.0>	100.0>	100.0>			100.0	200.0	Cadmium, dissolved	04/53/81
															7/6ш	
MW 43	MW 40	95 WM	MW35	WW 34	EE WM	WW 25	WW 31	WW 24	MW 23	82 WM	9 MW	76-WM	TW	LEVEL	RETEMARA	3TAG
_ M S G	D.G.W	W.Đ.G	HT08	HTOB	HTO8	HTO8	D.G.W	D'G'M	D.G.W	W.D.G	D.G.W	W.O.U	QT2 S	NOITOA	J	
L								SLE WELLS	AT ABTAW				MEAN +	<u> </u>		

			MEAN+				WATER TA									
	1	ACTION	2 STD	U.G.W	D.G.W	D.G.W	D.G.W	D.G.W	D.G.W	BOTH	BOTH	BOTH	BOTH	D.G.W	D.G.W	D.G.W
DATE	PARAMETER	LEVEL	WT	MW-37	MW 6	MW 28	MW 23	MW 24	MW 31	MW 25	MW 33	MW 34	MW35	MW 39	MW 40	MW 43
	ug/L							_	_							
04/23/91	Carbon tetrachloride *	5	0.3			<1	<1	<1	<1	<1	_	<1				
10/15/91	Carbon tetrachloride *	5	0.3			<1	<1	_	<1	<1	_	<1				
01/23/92	Carbon tetrachloride *	5	0.3			<1	<1	_	<1	<1	<1	<1				
03/23/92	Carbon tetrachloride *	5	0.3			<1	<1	<1	<1	<1	<1	<1				
09/30/92	Carbon tetrachloride *	5	0.3			NT	NT	NT	NT	NT	NT	NT				
03/05/93	Carbon tetrachloride *	5	0.3			NT	NT	NT	NT	NT	NT	NT				
09/21/93	Carbon tetrachloride *	5	0.3			NT	NT	NT	NT	NT	NT	NT				
03/23/94	Carbon tetrachloride *	5	0.3			NT	NT	NT	NT	NT	NT	NT				
09/16/94	Carbon tetrachloride *	5	0.3			NT	NT	NT	NT	NT	NT	NТ				
03/16/95	Carbon tetrachloride *	5	0.3			NT	NT	NT	ΝT	NT	NT	NT				
09/13/95	Carbon tetrachloride *	5	0.3			NT	NT	NT	NT	NT	NT	NT				
03/28/96	Carbon tetrachloride *	5	0.3	<0.3		NT	NT	NT	NT	NT	NT	NT	<0.3			
06/20/96	Carbon tetrachloride *	5	0.3	<0.3		NT	NT	NT	NT	NT	NT	NT	<0.3			
09/13/96	Carbon tetrachloride *	5	0.3	< 0.3		NT	NT	Dry	NT	NT	NT	NT	<0.3			
03/19/97	Carbon tetrachloride *	5	0.3	NT		NT	NT	NŤ	NT	NT	NT	NT	NT			
06/18/97	Carbon tetrachloride *	5	0.3	< 0.3		<0.3	NT	NT	NT	NT	NT	NT	<0.3			
08/30/97	Carbon tetrachloride *	5	0.3	NT		NT	NT	DRY	NT	NT	NT	NT	NT			
03/10/98	Carbon tetrachloride *	5	0.3	NT		NT	NT	DRY	NT	NT	NT	NT	NT			
09/21/98	Carbon tetrachloride *	5	0.3	NT		NT	NT	DRY	NT	NT	NT	NT	NT			
03/18/99	Carbon tetrachloride *	Š	0.3	NT		NT	NT	DRY	NT	NT	NT	NT	NT			
09/21/99	Carbon tetrachloride *	5	0.3	NT		NT	NT	DRY	NT	NT	NT	NT	NT			
03/21/2000	Carbon tetrachloride *	5	0.3	NT		NT	NT	DRY	NT	NT	NT	NT	NT			
06/28/2000	Carbon tetrachloride *	5	0.3	NT	<0.3	NT	NT	DRY	NT	NT	NT	NT	NT	<0.3	< 0.3	<0.3
09/28/2000	Carbon tetrachloride *	5	0.3	NT	<0.3	<0.3	NT	DRY	NT	NT	NT	NT	DRY	<0.3	<0.3	<0.3
12/27/2000	Carbon tetrachloride *	5	0.3	NT	<0.3	NT	NT	Dry	NT	NT	NT	NT	NT	<0.3	<0.3	<0.3
03/28/2001	Carbon tetrachloride *	5	0.3	NT	<0.3	<0.3	NT	NT	NT	NT	NT	NT	NT	<0.3	<0.3	<0.3
09/02/2001	Carbon tetrachloride *	5	0.3	NT	NT	<0.3	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
03/19/2002	Carbon tetrachloride *	5	0.3	NT	NT	<0.3	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
09/19/2002	Carbon tetrachloride *	5	0.3	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
03/14/2003	Carbon tetrachloride *	5	0.3	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
09/29/2003	Carbon tetrachloride *	5	0.3	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
03/08/2004	Carbon tetrachloride *	5	0.3	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
		5	0.3	NT	NT	ΝT	NT	· NT	NT	NT	NT	NT	NT	NT	NT	NT
09/27/2004 03/17/2005	Carbon tetrachloride *	5	0.3	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
	Carbon tetrachloride *	5 5	0.3	NT	NT	NT NT	NT NT	DRY	NT NT	NT NT	NT NT	NT NT	NT	NT	NT NT	NT NT
09/22/2005	Carbon tetrachloride *										NT	NT	NT			
03/17/2006	Carbon tetrachloride	5	0.3	NT	NT	NT	NT	DRY	NT	NT	NT NT	NI NT	NT NT	NT	NT	NT
09/22/2006	Carbon tetrachloride *	5	0.3	NT	NT	NT	NT	DRY	NT	ИŤ	NI	NI	NI	NT	NT	NT
	Mean			ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR
	Standard Deviation (STD)			ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR
	Mean + 2 STD			ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR

	012 S + ne 82-v 84-23 84-23 85-v 85-v	\(\mathbb{M}\)								COD			***	The state of the s	os: ooz osz	ition, mg/L
90909.65 74163.62 60571.18	er 0 er	808159.A 82871.72	72824.01 44115.21 44128.04	30120.86 98500.08 82820.89	26.45 80146.41 60200.63	90.04 93199.63 4640.831	24.19399 14.68523 54.19399	8.61 727168.8 84688.42	8.41 450021.7 52109.8S	\$18.85 16926.95 58285.09	82.21 173967.£ 45848.SS	50 0 50			nsəM Standan Devision (STD) GTS S + nsəM	
68 68 68	01> 01> 01> 01> 01> 01> 01> 01> 01>	01> 01> 01> 01> 01> 01> 01> 01> 01>	01> 01> 01> 01> 01> 01> 01> 01> 01> 01>	8. 8. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10	11 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	01> 01> 01> 01> 01> 01> 01> 01> 01> 01>	648 419 52 54 54 55 54 55 54 55 55 55 55 55 55 55	01> 01> 01> 01> 01> 01> 01> 01> 01>	01> 01> 01> 01> 01> 01> 01> 01> 01> 01>	20 20 20 20 20 20 20 20 20 20 20 20 20 2		Chemical Oxygen Demand	900Z/ZZ/60 900Z/ZL/60 900Z/ZL/60 900Z/ZL/60 900Z/ZL/60 900Z/Z/66 900Z/BZ/60 900Z/BZ/60 900Z/BZ/60 900Z/BZ/60 900Z/BZ/60 900Z/ZZ/60 900Z/60 900Z/60 900Z/60 900Z/60 900Z/60 900Z/60 900Z/60 90Z/60 90Z/6
D.G.W	D.G.W	D.G.W	BOTH 85WM	HTO8 PE WM 1.0S1	BOTH EE WM	BOTH 33.4	D.G.W 12.8	D.G.W MW 24 7.5	NATER TAE D.G.W MW 23	M.G.W 82.WM 8.78	D.G.W	W.G.W TE-WM	NEAN + S STD WT	ACTION LEVEL	PARAMETER mg/L Chemical Oxygen Demand	3TAG 19\ES\100

			Secondary	MEAN+				WATER TA	BLE WELLS								
1	1		MCL	2 STD	U.G.W	D.G.W	D.G.W	D.G.W	D.G.W	D.G.W	BOTH	BOTH	BOTH	вотн	D.G.W	D.G.W	D.G.W
DATE	1	PARAMETER	LEVEL	WT	MW-37	MW 6	MW 28	MW 23	MW 24	MW 31	MW 25	MW 33	MW 34	MW35	MW 39	MW 40	MW 43
		mg/L															
04/23/91	Chloride		250	17,5368			65	23.5	2.5	9	13.5	_	6				
10/15/91	Chloride		250	17,5368			47.6	19.33		6.6	17.4	-	6.6				
01/23/92	Chloride		250	17,5368			50.9	21.5	_	8.9	43.5	44.6	10				
03/23/92	Chloride		250	17.5368			48.1	23.2	8.5	8.5	70.8	70.8	9				
09/30/92	Chloride		250	17,5368			_	23	5	8	83	28	3				
03/05/93	Chloride		250	17.5368			59.2	23.5	_	<10	101	22.5	<10				
09/21/93	Chloride		250	17,5368			90	31.8	13.7	13.7	20	26	<10				
03/23/94	Chloride		250	17.5368			88.6	38.7	10.4	14.1	65.1	29.2	<10				
09/16/94	Chloride		250	17,5368			79	41	NT	16	82	21	<10				
03/16/95	Chloride		250	17,5368			55	45	NT	12	76	27	<10				
09/13/95	Chloride		250	17,5368			52	42	NT	15	69	22	15				
03/28/96	Chloride		250	17.5368	9		67	47	NT	13	173	22	8.9	30			
06/20/96	Chloride		250	17.5368	6.7		NT	NT	NT	NT	NT	NT	NT	44			
09/13/96	Chloride		250	17.5368	5.1		129	48.6	Dry	14.9	5.3	23.6	7.1	54.2			
03/19/97	Chloride		250	17.5368	<10		153	53	<10	32	23	38	17	96			
06/18/97	Chloride		250	17,5368	<10		125	NT	NT	NT	NT	NT	NT	95			
08/30/97	Chloride		250	17.5368	<10		109	49	DRY	25	30	19	<10	86			
03/10/98	Chloride		250	17.5368	<10		120	49	DRY	41	72	24	10	37			
09/21/98	Chloride		250	17.5368	<10		93	38	DRY	33	31	19	10	81			
03/18/99	Chloride		250	17.5368	<10		97	38	DRY	31	83	21	15	29			
09/21/99	Chloride		250	17.5368	<10		73	31	DRY	31	52	20	26	67			
03/21/2000	Chloride		250	17.5368	NT		249	28	DRY	25	55	23	45	NT			
06/28/2000	Chloride		250	17.5368	NT	28	NT	NT	DRY	NT	NT	NT	NT	NT	42	65	
09/28/2000	Chloride		250	17.5368	<10	59	78	39	DRY	31	124	24	13	DRY	36	22	
12/27/2000	Chloride		250	17.5368	NT	46	NT	NT	Dry	NT	NT	NT	NT	NT	49	46	210
03/28/2001	Chloride		250	17.5368	12	38	122	26	12	27	229	24	105	87	40	54	74
09/02/2001	Chloride		250	17,5368	<10	48	96	26	NT	38	135	29	56	150	45	23	71
03/19/2002	Chloride		250	17,5368	10	73	159	37	Dry	32	142	53	52	179	49	56	119
09/19/2002	Chloride		250	17.5368	10	67	120	26	Dry	31	181	44	25	111	43	35	72
03/14/2003	Chloride		250	17.5368	<10	85	102	30	Dry	25	163	383	34	181	53	30	129
09/29/2003	Chloride		250	17.5368	10	52	103	22	Dry	41	165	30	23	141	45	25	81
03/08/2004	Chloride		250	17.5368	10	71	143	14	25	50	197	45	43	149	42	47	94
09/27/2004	Chloride		250	17.5368	12	56	100	15	25	35	49	51	21	114	30	43	60
03/17/2005	Chloride		250	17.5368	15	69	96	16	25	46	125	48	30	235	29	27	37
09/22/2005	Chloride		250	17.5368	16	62	75	19	DRY	29	133	45	21	119	27	53	43
03/17/2006	Chloride		250	17.5368	16	83	108	18	DRY	32	146	49	28	340	34	39	233
09/22/2006	Chloride		250	17.5368	13	81	100	24	DRY	31	288	44	<10	142	24	16	57

 Mean
 11.13846
 61.35714
 99.2
 31.09485
 14.12222
 25.17813
 98.26061
 44.18387
 24.6
 116.6909
 39.2
 38.73333
 111.7857

 Standard Deviation (STD)
 3.199168
 16.73579
 40.11713
 11.19276
 8.322764
 11.87765
 67.29698
 63.17615
 21.54068
 71.5166
 8.510386
 14.20078
 73.98666

 Mean + 2 STD
 17.5368
 94.82873
 179.4343
 53.48037
 30.76775
 48.93343
 232.8546
 170.5362
 67.68135
 259.7241
 56.22077
 67.1349
 259.759

588 ERR ERR	ЕВВ ЕВВ ЕВВ	ЕВВ ЕВВ ЕВВ	E88 E88 E88	ਦਲਲ ਵਲਲ ਵਲਲ	883 883 883		588 588 588	E88 E88 E88	באצ באט באט באט	Eਲਲ ਵਲਲ ਵਲਲ	ERR ERR ERR	E88 E88			Mean Standard Deviation (STD) TS S + ns9M	
TN	ΔN	ΙN	ΔN	ΤN	ΙN	TN	ΤN	DBY	ΔN	TN	ΙN	TN	£0.0	1.0	Chromium, dissolved	9002/22/60
TN	±Ν	TN	ΙN	TN	TN	ΤN	LΝ	DBA	ΤN	TN	ΙN	TN	£0.0	1.0	Chromium, dissolved	9002/11/2009
IN	TN	ΤN	TN	IN	TN	TN	ΙN	YAG	TN	IN	TN	TN	60.0	1.0	Chromium, dissolved	09/22/2005
TN	TN	TN	TN	TN	TN	ΤN	TN	TN	TN	TM	TM	TN	£0.0	1.0	Chromium, dissolved	9002/11/2002
TM	TN	TN	TN	TN	TN	TN	TN	TM	TN	TN	TΜ	TN	60.0	1.0	Chromium, dissolved	\$00Z/\Z/60
ΤN	TM	ΤN	ΤN	TN	TN	TN	TΝ	TM	TN	TN	TN	TN	60.0	1.0	Chromium, dissolved	03/08/2004
ΤN	ΤN	ŦN	TN	TN	ΤN	TN	TN	YAG	TN	TN	TN	TN	60.0	1.0	Chromium, dissolved	09/29/2003
ŤΝ	TN	TN	TN	TN	TN	TN	TN	YAG	TN	TN	TN	TN	60.03	1.0	Chromium, dissolved	03/14/2003
ΤN	TN	TN	TN	TN	TN	TN	ΤN	TN	TN	TN	TN	TN	60.03	1.0	Chromium, dissolved Chromium, dissolved	09/19/2002
TN	TN	TN	TN	ΤN	TN	ΤN	TN	TN	ΤN	200.0>	ΤN	TN	60.03	1.0 1.0	Chromium, dissolved	03/16/2001
£0.0> TN	50.0> TN	TN	TN	TN	TN	TN	TN TN	TN TN	TN	£0.0> TN	£0.0> TM	TN TN	E0.0 E0.0	1.0	Chromium, dissolved	03/26/2001
£0.0>	£0.0>	<0.03 <0.03	TM TM	ΤΝ	ΤŃ	TN TN	TN	Ϋ́CI	TN TN	NT AT	£0.0>	TN TN	£0.03	1.0	Chromium, dissolved	12/27/2000
50.0>	<0.03	50.0>	YAO	TN TN	TM TN	TN	TN	DRY	TN	E0.0>	TN	TN	50.03	1.0	Chromium, dissolved	0002/20/00
50.0>	50.0>	50.0>	TN VOO	TN	TN TA	TN TA	TN	YAC	TN	TN	50.0>	TN	50.03	1.0	Chromium, dissolved	0002/82/90
CU U>	~U U3	20 02	TN TV	TN TN	TN TN	TN TA	TN	YAO	TN	TN	~0 US	TN	£0.0	1.0	Chromium, dissolved	03/21/2000
			TN TA	TN	TN TA	TN	TN TA	YAG	ŢŅ.	TM		TN	£0.0	1.0	Chromium, dissolved	66/12/60
			TN	TN	TN	TN TN	ŢŅ	YAG	TN TV	TN		IN	50.03	1.0	Chromium, dissolved	66/81/60
			TN TI	IN	TN	ŢŅ	ŢŅ	DRY	ŢŅ.	ŢŅ		TN Tr	£0.0	1.0	Chromium, dissolved	86/12/60
			ĬN	ĪŅ	ĪN	ĪN	IN	DRY	IN	TN		IN	60.0	1.0	Chromium, dissolved	86/01/60
			ĪN	IN	IN	TN	IN	DRY	IN	IN.		ĪN	60.0	1.0	Chromium, dissolved	76/05/80
			£0.0>	TN	ΤN	TN	ΤN	TN	±Ν	£0.0>		60.0>	60.0	1.0	Chromium, dissolved	76/81/90
			LN	TN	TN	TM	TN	TN	TN	TN		ΔN	£0.0	1.0	Chromium, dissolved	76/61/E0
			<0.03	TΝ	TN	TN	TN	ωa	TN	TN		£0.0>	60.03	1.0	Chromium, dissolved	96/21/60
			<0.03	TN	TN	TN	TN	TN	TN	TN		£0.0>	£0.0	1.0	Chromium, dissolved	96/07/90
			£0.0>	TN	ΤN	TN	1N	TN	TN	TN		£0.0>	60.03	1.0	Chromium, dissolved	96/82/60
				TN	TN	TN	TN	LΝ	TN	TN			60.03	1.0	Chromium, dissolved	96/E1/60
				TM	TM	ΤN	TM	TN	ΤN	ΤN			60.0	1.0	Chromium, dissolved	96/91/60
				TN	TΝ	TN	TN	TN	TN	TΝ			60.03	1.0	Chromium, dissolved	16/91/60
				TN	TN	TN	ΤN	TN	ΤN	TΝ			60.03	1.0	Chromium, dissolved	03/23/94
				TN	ΤN	TN	TN	TN	TN	TN			60.03	1.0	Chromium, dissolved	66/12/60
				ΤN	ΤN	TM	TΝ	TN	TN	TM			60.03	0.1	Chromium, dissolved	£6/\$0/£0
				TN	ΉN	TN	TN	TN	TN	TN			60.03	1.0	Chromium, dissolved	26/30/60
				60.0>	<0.03	<0.03	<0.03	60.0>	50.0>	<0.03			50.03	1.0	Chromium, dissolved	03/53/35
				<0.03	<0.03	50.0>	60.0>	_	60.0>	60.0>			50.03	1.0	Chromium, dissolved	76/53/10 16/51/01
				<0.03	_	60.0>	£0.0>	_	60.0>	50.0>			£0.03	1.0 1.0	Chromium, dissolved Chromium, dissolved	16/53/01
				<0.03		50.0>	£0.0>	€0.0>	£0.0>	<0.0>			60.0		7/6w	
MW 43	MW 40	65 WM	WW35	MW 34	MW 33	MW 25	RW 31	MW 24	MW 23	82 WM	9 WM	75-WM	TW	TEVEL	PARAMETER	DATE
D.G.W	W.Đ.đ	D.G.W	HT08	HTO8	HTO8	HT08	D.G.W		D.G.W	D.G.W	D.G.W	U.G.W	ats s	ИОПОА		1
L								STE METTS	AT RETAY	۸			+ NA3M	<u> </u>		

	I	Т	MEAN+				WATER TA	BLE WELLS								
		ACTION	2 STD	Ū.G.W	D.G.W	D.G.W	D.G.W	D.G.W	D.G.W	BOTH	BOTH	вотн	вотн	D.G.W	D.G.W	D.G.W
DATE	PARAMETER	LEVEL	wr_	MW-37	MW 6	MW 28	MW 23	MW 24	MW 31	MW 25	MW 33	MW 34	MW35	MW 39	MW 40	MW 43
	Conductivity, us/cm	-	2054.933			740	390	DRY	420	510	420	550				
	Conductivity, us/cm	_	2054.933			890	690	DRY	760	770	720	660				
	Conductivity, us/cm	_	2054,933	500		720	590	DRY	650	640	500	460	520			
06/20/96	Conductivity, us/cm	-	2054,933	640		NT	NT	NT	NT	NT	NT	NT	460			
09/13/96	Conductivity, us/cm	-	2054.933	560		690	560	Dry	630	60	500	570	440			
03/19/97	Conductivity, us/cm	_	2054.933	800		750	640	500	800	620	590	580	600			
06/18/97	Conductivity, us/cm	-	2054.933	530		540	NT	NT	NT	NT	NT	NT	380			
08/30/97	Conductivity, us/cm	_	2054.933	700		670	560	DRY	350	540	410	490	490			
03/10/98	Conductivity, us/cm	-	2054.933	860		710	710	DRY	940	510	360	470	390			
	Conductivity, us/cm	-	2054.933	650		590	640	DRY	720	460	590	540	490			
	Conductivity, us/cm	_	2054.933	1600		976	1414	DRY	1683	1370	902	1438	1005			
	Conductivity, us/cm	-	2054.933	650		590	640	DRY	720	460	590	540	490			
	Conductivity, us/cm	_	2054.933	NT		NT	NT	DRY	NT	NT	NT	NT	NT			
	Conductivity, us/cm	-	2054.933	NT	1138	NT	NT	DRY	NT	NT	NT	NT	NT	1074	884	1487
09/28/2000	Conductivity, us/cm	-	2054.933	688	466	686	1268	DRY	1673	1083	1009	1209	DRY	1324	923	1895
12/27/2000	Conductivity, us/cm	_	2054.933	NT	1252	NT	NT	Dry	NT	NT	NT	NT	NT	1224	960	1246
03/28/2001	Conductivity, us/cm	_	2054.933	1949	1532	938	1730	1190	1919	1161	1730	3000	1246	1622	1266	1520
	Conductivity, us/cm	_	2054.933	1583	1446	NT	1404	NT	1670	1455	1098	1455	1889	1354	885	1277
03/19/2002	Conductivity, us/cm	-	2054.933	NT	1590	1607	1570	Dry	1966	1490	1313	NT	1167	1470	1146	1190
	Conductivity, us/cm	-	2054.933	1530	1521	1395	1420	Dry	1903	1225	1182	1287	1209	1235	1081	1368
	Conductivity, us/cm	-	2054.933	1129	1379	1358	1060	Dry	928	833	732	1020	709	1201	926	
09/29/2003	Conductivity, us/cm	-	2054.933	1185	1018	890	1159	Dry	1328	1241	890	1055	886	1035	819	1142
	Conductivity, us/cm	-	2054.933	1647	1225	1294	1460	1138	1947	1360	1154	1237	1124	1446	955	1192
	Conductivity, us/cm	_	2054.933	1819	1673	1580	1398	1138	1870	1546	1300	1218	995	1588	1310	1254
	Conductivity, us/cm	_	2054.933	1564	1225	1413	1229	1138	1739	1407	1228	1432	1275	1364	1044	947
	Conductivity, us/cm	-	2054.933	1029	919	948	1431	DRY	1805	1598	1160	929	852	949	1049	1078
	Conductivity, us/cm	-	2054.933	1607	1377	1378	1585	DRY	2895	1685	1451	1775	1589	1422	1413	1653
09/22/2006	Conductivity, us/cm	_	2054.933	1374	1281	1275	1365	DRY	1894	1785	1225	1495	1097	1274	1067	1151

Mean Standard Deviation (STD) Mean + 2 STD 1117.909 1269.467 983.8261 1084.043 1020.8 1356.957 1035.174 915.3913 1064.091 877.4091 1305.467 1048.533 1314.286 486.5119 295.0475 338.4013 411.8947 261.1776 648.0075 477.6252 374.4378 584.4261 409.6085 186.8775 165.9855 241.1509 2054.933 1859.562 1660.629 1907.833 1543.155 2652.971 1990.424 1664.267 2232.943 1696.626 1679.222 1380.504 1796.588

883 883 883	ЕВВ ЕВВ ЕВВ	883 883 883	883 883 886	883 883 883	883 883 883	583 588 588	ਸ਼ਸ਼ਤ ਜ਼ਸ਼ਤ ਜ਼ਸ਼ਤ	ਦਲਲ ਦਲਲ ਵਲਲ	ЕВВ ЕВВ ЕВВ	ERR ERR ERR	E88 문명명 문명명	ERR ERR ERR			Mean Standard Deviation (STD) GTS S + S	;
TN TN	IN IN	ĪN ĪN	TN TN	12 12	TN TN	IN IN	ŢN ŢN	08Y 08Y	TN TN	TN TN	TN TN	TN TN	£0.0 £0.0	6.1 6.1	Copper, dissolved Copper, dissolved	
TN	TN	TN TN	TN	TN	TN TA	TN TV	TN	VAC DRY	TN TN	TN	TN	TN	£0.03	E.1	Copper, dissolved	
ŢŅ	TN	TN	TN	TN	TN	TN.	TN	YOU	TN	TN	TN	ŢN	50.0	6.1	Copper, dissolved	
LN	ĬN	TN.	ŢŅ	ŢŅ	TN TI	ŢŅ	ĪN	IN	ĨΝ	ŢŅ	ĪN	ŢŅ	£0.0	5.1	Copper, dissolved	
TN	ΙN	IN	ΔN	ТИ	ŢN.	TN	TN	TN	1N	IN	ĪN	TN	£0.0	1.3	Copper, dissolved	
ΔN	TN	TN	ΉN	TN	ΤN	TN	ΤИ	YAG	ΤN	TN	TN	TN	60.03	€.1	Copper, dissolved	
ΤN	TN	TN	TN	TN	TN	TN	TΝ	NRY	1N	ΤN	TN	TN	60.03	1.3	Copper, dissolved	
TN	TM	TN	TN	TM	ΉN	TN	TN	TN	TN	TN	TN	TM	60.03	£.1	Copper, dissolved	
TN	ΤN	TN	ΤŃ	ΤN	TN	TN	TN	TN	ΤN	200.0>	TN	TM	60.03	£.1	Copper, dissolved	
TN	ΤN	ΤN	TN	TN	TN	ΤN	60.03	5.1	Copper, dissolved Copper, dissolved							
50.0>	<0.03	60.0>	ТИ	TN	TN	TN	ΤN	ηα ΤΝ	TN	<0.03	£0.0>	TN TN	£0.03	E.1 E.1	Copper, dissolved	
<0.03 <0.03	£0.0>	£0.0>	YACI TN	TN TN	TN TN	TN TN	TN TN	YACI	TN TN	50.0> TN	TN £0.0>	TN	£0.0 £0.0	E.1 E.1	Copper, dissolved	
50.0>	£0.0>	£0.0>	TM:	TN	TN	TN	TN	VRC	TN TA	TN 50 02	50.0>	TN	£0.0	1.3	Copper, dissolved	
CO 0-	CO 0-	60 0-	TN	TN	TN TA	TN TV	TN	DRY	TN TV	TN	20 0-	TN TA	50.0	5.1	Copper, dissolved	
			TN	TN	TN	TN	ŢN	NSC DRY	ŢŅ	ŢN		IN	50.0	5.1	Copper, dissolved	
			IN	ŢŅ	ŢŅ	ĪN	ΤN	DRY	TN	TN		TN	60.03	5.1	Copper, dissolved	03/18/88
			ΙN	ΙN	TN	TN	ΤN	YAO	ΤN	ΤN		ΤN	60.03	1.3	Copper, dissolved	86/12/60
			TN	TN	TN	TN	TN	DYY	TN	TN		TΝ	60.03	1.3	Copper, dissolved	
			ΔN	TN	TN	TN	TN	DRY	ΤN	TN		TN	60.03	£.1	Copper, dissolved	
			60.0>	TΝ	ΤN	IN	ΤN	ŤΝ	TN	<0.03		60.0>	60.03	1.3	Copper, dissolved	
			TN	TN	TN	TN	TN	ŤΝ	TN	ΤN		TN	£0.0	1.3	Copper, dissolved Copper, dissolved	
			£0.0>	ΤN	TN	TN	TN	ķια	TN TN	TN TN		£0.0>	£0.0 £0.0	E.1 E.1	Copper, dissolved	
			£0.0>	TN TN	TN TN	TN TN	TN TN	TN TN	TN TN	TN TV		50.0>	£0.03	5.1	Copper, dissolved	
			CU U2	TN TV	TN	TN	TN	TM TM	TN	TN		-0 03	£0.0	5.1	Copper, dissolved	
				IN	TN	TN	LN	TN	TN.	TN			£0.0	5.1	Copper, dissolved	
				ŢN	ŢŅ	ŢŅ	IN.	TN	ΙN	IN			60.03	1.3	Copper, dissolved	t6/91/60
				ĬN	IN	IN	IN	LN	IN	IN			60.03	1.3	Copper, dissolved	03/23/84
				ŢN	TN	TN	TN	TN	ΔN	IN			60.03	1.3	Copper, dissolved	
				TN	TN	ΤN	ΤN	ΤN	TN	TN			60.03	1.3	Copper, dissolved	
				TN	TN	TN	ΤN	ΤN	TN	TN			60.0	1.3	Copper, dissolved	
				<0.03	<0.03	<0.0>	<0.03	50.0>	60.0>	<0.03			60.03	£.r	Copper, dissolved	
				50.0>	<0.03	<0.03	50.0>	_	<0.03	<0.0>			60.03	£.1	Copper, dissolved Copper, dissolved	
				<0.0>	_	60.0>	60.0>	£0.0>	£0.0> £0.0>	£0.0>			£0.0 £0.0	6.1 6.1	Copper, dissolved	
				60.0>	_	60.0>	60.0>	£U U>	£U U>	£0 0>			500	£ F	Daviossib aggre	POISCIPU
MW 43	MW 40	WW 39	WM32	WW 34	WM 33	WM SE	WW 31	WW 24	WW 23	82 WM	9 MW	TE-WM	TW	LEVEL	A3T3MAAA9	DATE
D.G.W	D.G.W	D.G.W	HT08	HT08	HTO8	HT08	M'5'G	M.D.O	M.Ö.O	W.Đ.O	W.Đ.Ō	w.e.u	OTS S	NOITOA]
								TE METER	WATER TAE				MEAN +			1

Γ	· · · · · · · · · · · · · · · · · · ·	1	MEAN+				WATER TA	BLE WELLS								
1	ł	ACTION	2 STD	U.G.W	D.G.W	D.G.W	D.G.W	D.G.W	D.G.W	вотн	BOTH	BOTH	BOTH	D.G.W	D.G.W	D.G.W
DATE	PARAMETER	LEVEL	wr i	MW-37	MW 6	MW 28	MW 23	MW 24	MW 31	MW 25	MW 33	MW 34	MW35	MW 39	MW 40	MW 43
	mg/L															
04/23/91	Iron, dissolved	-	8.095844			0.159	<0.03	<0.03	<0.03	0.177	_	0.133				
10/15/91	tron, dissolved	_	8.095844			0.035	0.452	_	0.636	0.205		0.767				
01/23/92	Iron, dissolved	_	8.095844			<0.03	<0.03	=-	<0.03	<0.03	<0.03	<0.03				
03/23/92	Iron, dissolved	-	8.095844			0.164	<0.03	0.076	0.068	0.121	0.052	< 0.03				
	Iron, dissolved	-	8.095844			_	<0.03	<0.03	<0.03	<0.03	0.033	0.043				
	Iron, dissolved	-	8.095844			<0.03	<0.03		<0.03	<0.03	0.035	<0.03				
	Iron, dissolved	-	8.095844			<0.03	<0.03	<0.03	<0.03	<0.03	2.46	0.05				
	Iron, dissolved	-	8.095844			<0.03	<.03	0.058	<0.03	<0.03	9.65	0.084				
	Iron, dissolved	-	8.095844			<0.03	<.03	NT	<0.03	0.05	2.9	0.55				
	Iron, dissolved	_	8.095844			<0.03	<.03	NT	<0.03	0.038	1.24	0.47				
	Iron, dissolved	-	8.095844			<0.03	<.03	NT	<0.03	<0.03	8.5	0.317				
	Iron, dissolved	-	8.095844	1.8		<0.03	<0.03	NT	<0.03	<0.03	5.77	0.386	0.067			
	tron, dissolved	_	8.095844	4.94		NT	NT	NT	NT	NT	NT	NT	0.927			
	Iron, dissolved	-	8.095844	0.793		<0.03	<0.03	Dry	< 0.03	0.134	2.27	1.3	1.02			
	Iron, dissolved	_	8.095844	3.87		0.032	<0.03	<0.03	0.072	<0.03	7.18	<0.03	0.484			
	Iron, dissolved	_	8.095844	4.07		<0.03	NT	NT	NT	NT	NT	NT	0.523			
	Iron, dissolved	-	8.095844	4.22		<0.03	<0.03	DRY	<0.03	0.076	5.02	1.93 1.52	5.05 0.5			
	Iron, dissolved	-	8.095844	3.78		<0.03	<0.03	DRY	0.033	0.717	5.83					
	Iron, dissolved	-	8.095844	6.59		<0.03	<0.03	DRY	<0.03	0.166	2.2	3.09	0.415			
	Iron, dissolved	_	8.095844	3.73		0.044	<0.03	DRY	<0.03	0.131	5.64	4.78	0.162			
	Iron, dissolved	_	8.095844	7.01		<0.03	<0.03	DRY DRY	<0.03 <0.03	0.076 0.371	3.99 5.69	5.53 4.15	0.337 NT			
	Iron, dissolved	-	8.095844	NT	-0.00	<0.03 NT	<0.03 NT	DRY	<0.03 NT	0.371 NT	D.09 NT	4.15 NT	NT	0.033	<0.03	<0.03
	Iron, dissolved	_	8.095844	NT 0.067	<0.03 <0.03	<0.03	<0.03	DRY	<0.03	<0.03	0.303	3.3	DRY	< 0.033	<0.03	<0.03
	tron, dissolved	-	8.095844 8.095844	0.067 NT	<0.03	<0.03 NT	<0.03 NT		NT	NT	0,303 NT	J.J NT	NT	0.109	<0.03	<0.03
	Iron, dissolved	_	8.095844	<0.03	<0.03	0.039	<0.03	Dry <0.03	<0.03	<0.03	2.7	<0.03	0.108	<0.03	<0.03	<0.03
	Iron, dissolved Iron, dissolved	_	8.095844	6.85	<0.03	<0.039	<0.03	NT	0.672	<0.03	4.47	6.97	0.168	1.15	<0.03	0.044
	Iron, dissolved	_	8.095844	0.713	<0.03	<0.03	<0.03	Dry	0.41	<0.03	4.46	0.654	<0.03	0.04	<0.03	<0.03
	Iron, dissolved	_	8.095844	0.713	<0.03	<0.03	<0.03	Dry	1.46	<0.03	4.12	5.65	<0.03	0.087	<0.03	<0.03
	Iron, dissolved	_	8.095844	3.64	0.035	<0.03	<0.03	Dry	<0.03	<0.03	4.95	4.67	<0.03	0.041	<0.03	<0.03
	Iron, dissolved	_	8.095844	1.02	<0.030	<0.03	<0.030	Dry	3.44	<0.030	0.556	5.63	0.078	0.041	<0.030	<0.030
	Iron, dissolved	_	8.095844	5.52	<0.030	<0.03	0.033	<0.03	0.463	0.121	7.99	0.231	0.109	3.46	<0.030	<0.030
	Iron, dissolved	_	8.095844	5.25	<0.030	<0.03	<0.030	<0.03	3.51	0.034	2.56	0.39	<0.030	0.136	<0.030	<0.030
	Iron, dissolved	_	8.095844	<0.030	<0.030	0.222	<0.030	<0.03	0.121	0.073	6.07	0.046	<0.030	0.288	<0.030	<0.030
	Iron, dissolved	_	8.095844	0.416	<0.030	<0.030	<0.030	DRY	1.63	0.068	5,11	0.666	0.042	0.033	<0.030	<0.030
	Iron, dissolved	_	8.095844	2.8	<0.030	0.036	<0.030	DRY	2.89	0.03	4.99	< 0.030	<0.030	0.042	<0.030	<0.030
	Iron, dissolved	_	8.095844	6.76	<0.030	<0.030	<0.030	DRY	0.041	0.048	3.83	0.074	<0.030	0.135	0.132	0.03
33/22/2000			2.0000 **							J						

	0Þ 38	-WM=	600Z/90/L0		五~~租~~	1•00Z/ 	►U/10 · 出····进·······························	- 出田	स स. ब्र	9)2(j 96/77/20 11 12 14 1	18 4 - 8 8 9	- "舞"" 舞 " 觜 "	(25/15/1 - 員 馬·□馬		28/1/60 0 — 2000
	39 33 10 54											· 			
		BSM -WM								ossig , bi				,	►10.0
83 83 83	883 883	883 883 883	ERR ERR ERR	10.0 0 10.0	ERR ERR ERR	700.0 0 700.0	900.0 0 900.0	S10.0 0 S10.0	600.0 0 600.0	ERR ERR ERR	EKK EKK EKK	ЕВВ ЕВВ ЕВВ			nesM Standard Devistion (STD) GTS S + nesM
200.09 200.09 200.09 200.09 200.09	IN IN IN IN IN IN IN IN IN IN S00°0> 900°0>	1N 1N 1N 1N 1N 1N 1N 1N 1N 1N 2000> 9000>	26.00.00.00.00.00.00.00.00.00.00.00.00.00	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	88855555555555555555555555555555555	00 00 00 00 00 00 00 00 00 00 00 00 00	00 000 00 00		\$\\ \text{0.00}{\text{0.00}}\$	22111111111111111111111111111111111111	2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	34544444444444444444444444444444444444	\$00'0 \$00'0	\$10.0 \$10.0 \$10.0 \$10.0 \$10.0 \$10.0 \$10.0 \$10.0 \$10.0 \$10.0 \$10.0 \$10.0 \$10.0 \$10.0 \$10.0 \$10.0 \$10.0 \$10.0 \$10.0 \$10.0	beal (esc)
WW 43	WW 40	6E WW	MW35	MW 34	WW 33	WW 25	NW 31	MW 24	WW 23	MW 28	WA 6	75-WM	TW	רבאבר	PATE PARAMETER mg/L

	T		MEAN+				WATER TA	BLE WELLS								
		ACTION	2 STD	U.G.W	D.G.W	D.G.W	D.G.W	D.G.W	D.G.W	ВОТН	BOTH	BOTH	BOTH	D.G.W	D.G.W	D.G.W
DATE	PARAMETER	LEVEL	wr	MW-37	MW 6	MW 28	MW 23	MW 24	MW 31	MW 25	MW 33	MW 34	MW35	MW 39	MW 40	MW 43
	mg/L	,														
04/23/91	Magnesium, dissolved	_	109.2752			102	53.2	75.1	45.2	35.6	_	29.5				
	1 Magnesium, dissolved	_	109.2752			85.9	53.4	_	46.1	31.4	_	31.7				
	2 Magnesium, dissolved	_	109.2752			85.2	49.8	-	43.1	56.4	58	68				
03/23/92	2 Magnesium, dissolved	_	109.2752			111	44.1	76,6	98.9	53.9	65.7	65.7				
09/30/92	Magnesium, dissolved	_	109.2752			NT	NT	NΤ	NT	NT	NT	NT				
03/05/93	3 Magnesium, dissolved	_	109.2752			NT	NT	NT	NT	NT	NT	NT				
09/21/93	Magnesium, dissolved	_	109.2752			NT	NT	NT	NT	NT	NT	NT				
03/23/94	Magnesium, dissolved	_	109.2752			NT	NT	NT	NT	NT	NT	NT				
09/16/94	Magnesium, dissolved	-	109.2752			NT	NT	NT	NT	NT	NT	NT				
	Magnesium, dissolved	-	109.2752			NT	NT	NT	NT	NT	NT	NT				
09/13/95	Magnesium, dissolved	-	109.2752			NT	NT	NT	NT	NT	NT	NT				
	Magnesium, dissolved	_	109.2752	107		NT	Иť	NT	NT	NT	NT	NT	51.8			
	Magnesium, dissolved	-	109.2752	94.3		NT	NT	NT	NT	NT	NT	NT	48.6			
	Magnesium, dissolved		109.2752	94.7		NT	NT	Dry	NT	NT	NT	NT	58.1			
	Magnesium, dissolved	-	109.2752	NT		NT	NT	NT	NT	NT	NT	NT	NT			
	7 Magnesium, dissolved	-	109.2752	100		55.7	NT	NT	NT	NT	NT	NT	45			
	Magnesium, dissolved	-	109.2752	NT		NT	NT	DRY	NT	NT	NT	NT	NT			
	3 Magnesium, dissolved	_	109.2752	NT		NT	NT	DRY	NT	NT	NT	NT	NT			
	3 Magnesium, dissolved	-	109.2752	NT		NT	NT	DRY	NT	NT	NT	NT	NT			
	3 Magnesium, dissolved	_	109.2752	NT		NT	NT	DRY	NT	NT	NT	NT	NT			
	Magnesium, dissolved	-	109.2752	NT		NT	NT	DRY	NT	NT	NT	NT	NT			
) Magnesium, dissolved	-	109.2752	NT		NT	NT	DRY	NT	NT	NT	NT	NT			
) Magnesium, dissolved	-	109.2752	NT	63.7	NT	NT	DRY	NT	NT	NT	NT	NT	68.7	51.1	96.7
) Magnesium, dissolved	-	109.2752	NT	NT	44.6	NT	DRY	NT	NT	NT	NT	DRY	64.9	44.9	90.9
) Magnesium, dissolved	-	109.2752	NT	63.7	NT	NT	Dry	NT	NT	NT	NT	NT	76.4	51.9	94.7
	Magnesium, dissolved	-	109.2752	NT	58.1	32.9	NT	NT	NT	NT	NT	NT	NT	70.2	58.4	58.4
	Magnesium, dissolved	_	109.2752	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
	Magnesium, dissolved	_	109.2752	NT	NT	55.4	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
	Magnesium, dissolved	-	109.2752	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
	Magnesium, dissolved	-	109.2752	NT	NT	NT	NT	DRY	NT	NT	NT	NT	NT	NT	NT	NT
	Magnesium, dissolved	_	109.2752	NT	NT	NT	NT	DRY	NT	NT	NT	NT	NT	NT	NT	NT
	Magnesium, dissolved	_	109.2752	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
	Magnesium, dissolved	_	109.2752	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
	Magnesium, dissolved	-	109.2752	NT	NT	NT.	NT	NT	NT	NT	ΝT	NT	NT	NT	NT	NT
	Magnesium, dissolved	-	109.2752	NT NT	NT NT	NT NT	NT	DRY	NT	NT	NT NT	NT NT	NT NT	NT NT	NT	NT
	Magnesium, dissolved	-	109.2752	NT NT	NT NT	NT NT	NT NT	DRY DRY	NT	NT NT	NT NT	NT NT	NI NT	NT NT	NT NT	NT NT
09/22/2006	i Magnesium, dissolved	-	109.2752	MI	IN I	LAT	IN I	DKT	NТ	DI I	NI	14.1	141	L4.1	NI	N1

	883	ERR ERR	883 883	ВЯЗ	ERR	883	ERR	883 883 883	883 883 883	283 283 283	883 883 883	883 883 883			nssM Standard Deviation (STD) GTS S + nssM	3
ΙN	ΤN	TN	ΤN	TN	TN	ΤN	TN	NRO	TN	ΤN	TN	ΤN	9000.0	200.0	hercury, dissolved	
TN	TN	ΤN	TN	TN	TN	ΤN	ΤN	DRY	· TN	TN	ΤN	ΤN	2000.0	200.0	Aercury, dissolved	
TM TM	TN TN	TN TN	TN TN	TN TN	TN TN	TN TN	TN TN	TN YAO	TN TN	TN TN	TN TN	TN TN	2000.0 2000.0	200.0 200.0	Aercury, dissolved Aercury, dissolved	
TN TU	TN	TN,	TN	TN	TN	TN	TN	TN	TN TN	TN TN	TN TN	TN	2000.0	200.0	Aercury, dissolved	
TN	IN	ĪŅ	TN Ti	TN	ŢŅ	TN	TN	TN TV	ŢŅ	TN.	ŢŅ	TN	2000.0	200.0	Aercury, dissolved	
TN	ΙN	TN	ΤN	TN	ΤN	TN	1N	YAO	TN	TN	TN	ΤN	2000.0	200.0	Aercury, dissolved	
TN	TN	TM	TN	TN	TΝ	ΤN	ΤM	YAO	TΝ	TN	ΤN	TN	2000.0	0.002	Aercury, dissolved	
TN	ΤN	ΤN	TN	ŤΝ	ΤN	TN	TM	TN	TN	TN	TN	ΤN	6000.0	200.0	Aercury, dissolved	
TN	TN TN	TN TN	TN TN	TN TN	TN TN	TN TN	TN TN	TN TN	TN TN	TN <0.0005	TN TN	TM TM	2000.0 2000.0	200.0 200.0	Aercury, dissolved Aercury, dissolved	
5000.0>	2000.0>	2000.0>	TN	TN TA	TN	TN TV	TN	TN	TN TA	2000.0>	2000.0>	TM	2000.0	200.0	Aercury, dissolved	
2000.0>	2000.0>	8000.0>	ŢŅ	ĪN	IN	ŢŅ	IN	ΩΩ	ŢŅ	TN	2000,0>	ŢN	2000.0	200.0	Aercury, dissolved	
<0.0005	<0.0005	<0.0005	NACI	ΤM	TN	±Ν	TN	DRY	TN	<0.0005	TN	ΤN	2000.0	200.0	Aercury, dissolved	
2000.0>	2000.0>	2000.0>	TN	TN	TN	TN	TM	YAO	TN	TN	<0.0005	ŤΝ	2000.0	200.0	Aercury, dissolved	
			TN	ΤN	TN	TN	TΝ	YAO	ΤN	īΝ		TN	90000	200.0	Aercury, dissolved Aercury, dissolved	
			TN TN	TN TN	TN TN	TM TN	TN TN	YAO YAO	TN TN	TN TN		TN TN	2000.0 2000.0	200.0 200.0	Aercury, dissolved	
			TN	TN	TN	TN	TN	YAG	TN	TN TA		TN	3000.0	200.0	Aercury, dissolved	
			ŢŅ	TN TI	TN	ŢŅ	TN	YAG	ŢŅ	TN		ŢN	2000.0	200.0	Aercury, dissolved	
			IN	ΤN	LΝ	TN	ΤN	YAO	IN	TN		TN	6000.0	200.0	Aercury, dissolved	
			2000.0>	TN	TM	TN	TN	ΉN	TN	2000.0>		2000.0>	2000.0	200.0	Aercury, dissolved	
			TN	TN	1N	TN TN	ΤN	YO TN	TN	TN		TN	2000.0 2000.0	200.0 200.0	Aercury, dissolved Aercury, dissolved	
			2000.0>	TN TN	TN TN	TN	TN TN	TN VOC	TN TN	TN TN		2000.0>	2000.0	0.002	Aercury, dissolved	
			3000.0>	TN	TN TN	TN	TN TA	TN	TN	TN		2000.0>	3000.0	0.002	Nercury, dissolved	
	•		5000	IN	IN	ĪN	ĪN	TN	TN	IN			2000.0	200.0	Aercury, dissolved	4 S6/E1/60
				TN	TN	TN	TN	TN	TN	TN			8000.0	200.0	hercury, dissolved	
				TN	ΤN	TM	TN	ΤN	TΝ	ΤN			8000.0	200.0	Mercury, dissolved	
				TN	TN	TN	TN	TN	ΤN	TN			2000.0	200.0	Aercury, dissolved	
				TN TN	TM: TN	TN TN	TN TN	TN TN	TN TN	TN TN			2000.0 2000.0	Z00.0 Z00.0	Mercury, dissolved Mercury, dissolved	
				TN TA	TIV TIV	TN TA	TN TA	ŢŅ.	TN	TN			2000.0	0.002	Mercury, dissolved	
				2000.0>	2000.0>	2000.0>	<0.0005	2000.0>	2000.0>	2000.0>			2000.0	200.0	Mercury, dissolved	
				2000.0>	<0.0005	2000.0>	<0.0005		2000.0>	5000,0>			2000.0	200.0	Mercury, dissolved	
				2000.0>	_	2000.0>	<0.0005	-	6000.0>	<0.0005			2000.0	200.0	Mercury, dissolved	
				100.0>	_	100.0>	100.0>	100.0>	100.0>	100.0>			2000.0	200.0	mg/L Mercury, dissolved	1 16/23/91
MW 43	WW 40	6E MW	SEMM	WW 34	WW 33	WM S2	IE MW	WW 24	WW 23	NW 28	9 MW	TE-WM	TW	TEVEL	PARAMETER	DATE
D.G.W	D.G.W	D.G.W	BOTH	BOTH AF WW	BOTH 33	BOTH	D.G.W	D.G.W	D.G.W	D.G.W	D.G.W	W.a.u	aTS.s	NOITOA	G_1211100VQ	31,0
			,,,,,,,,,	1,200		.,,,,,,,,,			AT RETAW				WEAN +			L

			MEAN+				WATER TA									
	I	ACTION	2 STD	U.G.W	D.G.W	D.G.W	D.G.W	D,G.W	D.G.W	BOTH	ВОТН	вотн	вотн	D.G.W	D.G.W	D.G.V
DATE	PARAMETER	LEVEL	WT	MW-37	MW 6	MW 28	MW 23	MW 24	MW 31	MW 25	MW 33	MW 34	MW35	MW 39	MW 40	MW 4
	mg/L									<0.5		<0.5				
	Nitrogen, Ammonia	-	1.4			<0.5	<0.5	<0.5	<0.5		_					
	Nitrogen, Ammonia	-	1.4			<0.5	<0.5		<0.5	<0.5		<0.5				
	Nitrogen, Ammonia	-	1.4			<1.0	<1.0		<1.0	<1.0	<1.0	<1.0				
	Nitrogen, Ammonia	-	1.4			<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0				
09/30/92	Nitrogen, Ammonia	-	1.4			_	<1	<1	<1	<1	<1	<1				
	Nitrogen, Ammonia	-	1.4			<1	<1	- .	<1	<1	1.7	<1				
	Nitrogen, Ammonia	-	1.4			<1	<1	<1	<1	<1	1.7	<1				
	Nitrogen, Ammonia	-	1.4			<1	<1	<1	<1	<1	1.8	1.1				
	Nitrogen, Ammonia	-	1.4			<1	<1	NT	<1	<1	1.8	1.3				
	Nitrogen, Ammonia	-	1.4			<1	<1	NT	<1	<1	1.6	1				
	Nitrogen, Ammonia	-	1.4			<1	<1	NT	<1	<1	1.5	1.2				
	Nitrogen, Ammonia	-	1.4	1.4		<1	<1	NT	<1	<1	1.4	1.8	<1			
	Nitrogen, Ammonia	-	1.4	<1		NT	NT	NT	NT	NT	NT	NT	<1			
	Nitrogen, Ammonia	-	1.4	<1		<1	<1	Dry	<1	<1	1.6	1.4	<1			
	Nitrogen, Ammonia	-	1.4	<1		<1	<1	<1	<1	<1	1.5	<1	<1			
06/18/97	Nitrogen, Ammonia	_	1.4	<1		<1	NT	NT	NT	NT	NT	NT	<1			
	Nitrogen, Ammonia	_	1.4	<1		<1	<1	DRY	<1	<1	1.4	1.4	<1			
	Nitrogen, Ammonia	_	1.4	<1		<1	<1	DRY	<1	<1	1.6	1.4	<1			
	Nitrogen, Ammonia	-	1.4	<1		<1	<1	DRY	<1	<1	1.6	1.4	<1			
	Nitrogen, Ammonia	-	1.4	<1		<1	<1	DRY	<1	<1	1.4	<1	<1			
	Nitrogen, Ammonia	-	1.4	<1		<1	<1	DRY	<1	<1	1.5	<1	<1			
	Nitrogen, Ammonia	-	1.4	NT		<1	<1	DRY	<1	<1	1.6	<1	NT			
	Nitrogen, Ammonia	-	1.4	NT	<1	NT	NT	DRY	NT	NT	NT	NT	NT	<1	<1	<1
09/28/2000	Nitrogen, Ammonia	_	1.4	<1	<1	<1	<1	DRY	<1	<1	1.35	<1	DRY	<1	<1	<1
	Nitrogen, Ammonia	_	1.4	NT	<1	NT	NT	Dry	NT	NT	NT	NT	ИT	<1	<1	<1
03/28/2001	Nitrogen, Ammonia	_	1.4	<1	<1	<1	<1	<1	<1	<1	1.8	<1	<1	<1	<1	<1
	Nitrogen, Ammonia	_	1.4	<1	<1	<1	<1	NT	<1	<1	1.6	<1	<1	<1	<1	2.4
	Nitrogen, Ammonia	_	1.4	<1	<1	<1	<1	Dry	<1	<1	2.2	<1	<1	<1	<1	2.2
09/19/2002	Nitrogen, Ammonia	_	1.4	<1	<1	<1	<1	Dry	<1	<1	<1	<1	<1	<1	<1	3.1
	Nitrogen, Ammonia	_	1.4	<1	1.2	<1	<1	Dry	<1	<1	1.4	<1	<1	<1	<1	5.5
	Nitrogen, Ammonia	_	1.4	<1.0	<1.0	<1.0	<1.0	Dry	<1.0	<1.0	1.6	1.2	<1.0	<1	<1.0	2.6
	Nitrogen, Ammonia	_	1.4	<1.0	<1.0	<1	<1.0	<1.0	<1.0	<1.0	2	<1.0	<1.0	<1	<1.0	4.6
09/27/2004	Nitrogen, Ammonia	_	1.4	<1.0	<1.0	<1	<1.0	<1.0	<1.0	<1.0	2.2	1	<1.0	<1.0	<1.0	3.3
03/17/2005	Nitrogen, Ammonia	_	1.4	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	1.5	<1.0	<1.0	<1.0	<1.0	<1.0
	Nitrogen, Ammonia	_	1.4	<1.0	<1.0	<1	<1.0	<1.0	<1.0	<1.0	2.2	1	<1.0	<1.0	<1.0	3.3
	Nitrogen, Ammonia	_	1.4	<1.0	<1.0	<1.0	<1.0	DRY	<1.0	<1.0	1.8	<1.0	<1.0	<1.0	<1.0	5.2
	Nitrogen, Ammonia	_	1,4	<1.0	<1.0	<1.0	<1.0	DRY	<1.0	<1.0	1.8	<1.0	<1.0	<1.0	<1.0	<1.0

MONITORING WELL SAMPLING RESULTS

AMES-STORY ENVIRONMENTAL LANDFILL

95-SDP-13-91P

	MEAN + WATER TABLE WELLS ACTION 2 STD U.G.W D.G.W D.G.W D.G.W D.G.W BOTH BOTH BOTH BOTH D.G.W D.																
				2 STD	U.G.W	D.G.W	D.G.W	D.G.W	D.G.W	D.G.W	BOTH					D.G.W	D.G.W
DATE	PARA		LEVEL	WT	MW-37_	MW 6	MW 28	MW 23	MW 24	MW 31	MW 25	MW 33	MW 34	MW35	MW 39	MW 40	MW 43
		mg/L															
	l Phenois		-	0.1			<0.1	<0.1	<0.1	<0.1	<0.1	_	<0.1				
	1 Phenols		-	0.1			<0.1	<0.1	_	<0.1	<0.1	- .	<0.1				
	2 Phenois		_	0.1			<0.1	<0.1	- .	<0.1	<0.1	<0.1	<0.1				
	2 Phenois		-	0.1			<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1				
	2 Phenois		-	0.1				<0.1	<0.1	<0.1	<0.1	<0.1	<0.1				
	3 Phenois		-	0.1			NT	NT	NT	NT	NT	NT	NT				
	3 Phenois		-	0.1			<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1				
	Phenois		-	0.1			NT	NT	NT	NT	NT	NT	ŅΤ				
	Phenois		-	0.1			<0.1	<0.1	NT	<0.1	<0.1	<0.1	<0.1				
	Phenols		-	0.1			<0.1	<0.1	NT	<0.1	<0.1	<0.1	<0.1				
	5 Phenois		-	0.1			NT	NT	NT	NT	NT	NT	NT				
03/28/96	Phenois		-	0.1	NT		NT	NT	NT	NT	NT	NT	NT	NT			
	S Phenois		-	0.1	NT		NT	NT	NT	NT	NT	NT	NT	NT			
	6 Phenois		_	0.1	<0.1		<0.1	<0.1	Dry	<0.1	<0.1	<0.1	<0.1	<0.1			
03/19/97			-	0.1	NT		NT	NT	NT	NT	NT	NT	NT	NT			
	Phenois		-	0.1	NT		NT	NT	NT	NT	NT	NT	NT	NT			
	Phenois		-	0.1	<0.1		<0.1	<0.1	DRY	<0.1	<0.1	<0.1	<0.1	<0.1			
	3 Phenois		-	0.1	NT		NT	NT	NT	NT	NT	NT	NT	NT			
09/21/98	3 Phenois		-	0.1	<0.1		<0.1	<0.1	DRY	<0.1	<0.1	<0.1	<0.1	<0.1			
	Phenois		-	0.1	NT		NT	NT	DRY	NT	NT	NT	NT	NT			
	Phenols		-	0.1	<0.1		<0.1	<0.1	DRY	<0.1	<0.1	<0.1	<0.1	<0.1			
03/21/2000			_	0.1	NT		NT	NT	DRY	NT	NT	NT	NT	NT			
06/28/2000			-	0.1	NT	NT	NT	NT	DRY	NT	NT	NT	NT	NT	NT	NT	NT
09/28/2000			-	0.1	<0.1	<0.1	<0.1	<0.1	DRY	<0.1	<0.1	<0.1	<0.1	DRY	<0.1	<0.1	<0.1
12/27/2000			-	0.1	NT	NT	NT	NT	Dry	NT	NT	NT	NT	NT	NT	NT	NT
03/28/2001			-	0.1	NT	NT	ΝT	NT	NT	NT	NT	NT	NT	NT	NT	M	NT
09/02/2001			-	0.1	<0.1	<0.1	<0.1	<0.1	NŢ	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
03/19/2002			_	0.1	NT	NT	NT	NT	NŤ	NT	NT	NT	NT	NT	NT	NT	NT
09/19/2002			-	0.1	<0.1	<0.1	<0.1	<0.1	Dry	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
03/14/2003			-	0.1	NT	NT	NT	NT	Dry	NT	NT	NT	NT	NT	NT	NT	NT
09/29/2003			-	0.1	<0.100	<0.100	<0.100	<0.100	Dry	<0.100	<0.100	<0.100	<0.100	<0.100	NT	<0.100	<0.100
03/08/2004			-	0.1	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
09/27/2004			-	0.1	<0.100	<0.100	<0.100	<0.100	NT	<0.100	<0.100	<0.100	<0.100	<0.100	<0.100	<0.100	<0.100
03/17/2005			-	0.1	NT	NT	NT	NT	NT	NT	NT	NT -0.400	NT	NT	NT	NT	NT
09/22/2005			-	0.1	<0.100	<0.100	<0.100	<0.100	DRY	<0.100	<0.100	<0.100	<0.100	<0.100	<0.100	<0.100	<0.100
03/17/2006			-	0.1	NT	NT	NT	NT	DRY	<0.100	NT -0.400	<0.100	NT =0.400	NT =0.400	NT O 100	NT -0.100	NT
09/22/2006	Phenois		-	0.1	<0.100	<0.100	<0.100	<0.100	DRY	<0.100	<0.100	<0.100	<0.100	<0.100	<0.100	<0.100	<0.100
	Mean				ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR
	Standard Deviation	n (STD)			ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR
	Mean + 2 STD				ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR

DATE PARAMETER LEVEL WT MW-37 MW 6 MW 28 MW 23 04/23/91 Total Organic Halogens - 0.01732 0.06 <0.01 01/15/91 Total Organic Halogens - 0.01732 <0.01 <0.01 01/23/92 Total Organic Halogens - 0.01732 0.03 0.02	28 MW 23 MW 6	40.01 (0.01	MW 31 M 0.016 0 <0.011 - <0.011 0 <0.011 0 <0.011 0 NT 0.02 NT 0.015 0 0.02 NT N	MW 25 MW 0.033 - <0.01 - 0.02 0.9 0.02 <0.0 NT N 0.02 0.0 NT N 0.02 0.0 NT N NT	NT NT .024 <0.0 .04 0.02 NT NT NT NT	734 MW35 15 10.01 10.1 11 11 17 17 17 17 17 17 17 17 17 17 17	DGW MW 39	D.G.W MW 40	D.G.W MW 43
04/23/91 Total Organic Halogens	6	<0.01 (0	0.016 0 0 <0.011	0.033 <0.01 <0.01 <0.02 0.9 0.02 0.0 0.02 0.0 0.02 0.0 0.02 0.0 0.01 NT	- 0.03 - <0.01 <0.0 - 0.01 <0.0 - 0.01 <0.0 - 0.01 0.0 - 0.01 0.0 - 0.05 0.0 - 0.05 0.0 - 0.04 <0.0 - 0.04 <0.0 - 0.04 NT	155 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1	MW 39	M/V 40	MW 43
Output	01		<0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.02 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01	<pre><0.01</pre>		.01 .01 .01 .01 .01 .01 .02 .02 .03 .03 .03 .03 .03 .03 .03 .03 .03 .03			
10/15/91 Total Organic Halogens	01		<0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.02 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01	<pre><0.01</pre>		.01 .01 .01 .01 .01 .01 .02 .02 .03 .03 .03 .03 .03 .03 .03 .03 .03 .03			
01/23/92 Total Organic Halogens - 0.01732 0.03 0.02 03/23/92 Total Organic Halogens - 0.01732 0.04 <0.01	3 0.02	<01 -0.01 -0.01 -0.02	C0.01 C0.01 C0.01 C0.01 C0.02 C0.01 C0.02	 <0.01 <0.02 <0.92 <0.92 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.00 <0.02 <0.00 <0.01 	CO.01	.01 11 17 17 12 17 10 10 11 11 11 11 11 11 11 11 11 11 11			
03/23/92 Total Organic Halogens - 0,01732 - <0.01	4	<0.01 0.01 NT 0.02 NT DRY ORY	<0.01 (0.01 (0.01) (0.01) (0.02 (0.02) (0.02	0.92 0.9 0.02 0.0 0.02 0.0 0.024 0.0 0.024 0.0 0.024 0.0 0.025 0.0 0.01 NT	0.99 0.0 0.01 0.0 0.01 0.0 0.05 0.0 0.07 NT NT 0.05 0.0 0.024 <0.0 0.04 0.0 0.04 0.0 0.01 NT NT 0.01 NT 0.01 NT N	11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			
09/30/92 Total Organic Halogens - 0.01732 - <0.01	- <0.01	0.01 NT 0.02 NT	0.01 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.02	0.01 0.01 NT NT 0.05 0.02 NT NT NT 0.024 <0.04 0.04 0.02 NT N	11 T			
03/05/93 Total Organic Halogens	T NT 100	NT 0.02 NT	NT	NT N 0.02 0.00 0.00 NT N N N N N N N N N N N N N N N N N	NT N1 .055 0.07 NT N1 .024 <0.0 .04 0.02 NT NT NT NT NT NT NT NT .01 0.01 NT NT NT NT NT NT .01 0.01 NT N	T			
09/21/93 Total Organic Halogens	5 0.01 0.01 55 <0.01 0.01 56 <0.01 0.01 F NT F NT 0.01 F NT NT 0.01 F NT	0.02 NT	0.02 0 NT 0.015 0 0 0 NT	0.02 0.0 NT N 0.024 0.02 0.02 0.0 NT N NT	0.05 0.02 NT NT .024 <0.0 .04 0.02 NT	2 T T 01 12 T T NT NT 0.03 T NT NT			
03/23/94 Total Organic Halogens - 0.01732 NT NT NT O.05 <0.05	NT	NT N	NT 0.015 0 0.02 0 NT NT NT 0.02 0 NT NT 0.02 0 NT NT	NT N 0.024 0.02 0.02 0.00 NT NT NT N 0.02 0.0 NT NT NT N 0.02 0.0 NT NT NT N NT N	NT NT NT 0.024 <0.0 0.04 0.02 NT N	T 01 22 T T T NT T NT T NT T NT NT NT NT NT NT			
19/16/94 Total Organic Halogens	05 <0.01	NT CONTROL OF CONTROL	0.015 0 0.02 0 NT NT NT 0.02 NT NT 0.02 NT 0.02 NT NT NT 0.02 NT NT NT 0.02 NT	0.024 0.02 0.02 0.0 NT NT NT NT NT N 0.02 0.0 NT NT NT NT NT NT 0.01 <0.0	.024 <0.0 .04 0.02 NT 0.01 <0.01	01 22 T T NT T NT 0.03 T NT NT NT O.03			
03/16/95 Total Organic Halogens - 0.01732 0.06 <0.01	6 <0.01	NT NT NT NT Ory NT NT OT NT OT	0.02 0 NT NT NT 0.02 0 NT NT 0.02 0 NT NT 0.02 <	0.02 0.0 NT NT NT NT NT NT O.02 0.0 NT NT NT NT NT NT O.01 NT NT O.01 0.01	0.04 0.02 NT NT NT NT NT NT 0.01 0.01 NT 0.001 <0.00	12 T NT T NT 11 0.03 T NT T NT 01 <0.01			
09/13/95 Total Organic Halogens	NT N	NT NT OT OT NT OT NT ORY ORY ORY	NT NT NT 0.02 0 NT NT 0.02 <	NT N	NT N	T NT T NT O.03 T NT T NT O.03 T NT O.01			
03/28/96 Total Organic Halogens - 0.01732 NT NT NT 08/20/96 Total Organic Halogens - 0.01732 NT NT NT 09/13/96 Total Organic Halogens - 0.01732 NT NT NT 06/18/97 Total Organic Halogens - 0.01732 NT NT NT 08/30/97 Total Organic Halogens - 0.01732 NT NT NT 08/30/98 Total Organic Halogens - 0.01732 NT NT NT 09/21/89 Total Organic Halogens - 0.01732 NT NT NT 09/21/89 Total Organic Halogens - 0.01732 NT NT NT 09/21/89 Total Organic Halogens - 0.01732 NT NT NT 09/21/89 Total Organic Halogens - 0.01732 NT NT NT 09/21/89 Total Organic Halogens - 0.01732 NT NT NT 09/21/89 Total Organic Halogens - 0.01732 NT NT <t< td=""><td>T NT </td><td>NT NT Dry NT NT DRY NT DRY NT</td><td>NT NT 0.02 0 NT NT 0.02 <</td><td>NT N1 NT N' 0.02 0.0 NT N1 NT N1 <0.01 <0.0 NT N1</td><td>NT NT NT NT 0.01 0.01 NT NT NT NT NT 0.01 <0.00</td><td>T NT T NT 0.03 T NT T NT 01 <0.01</td><td></td><td></td><td></td></t<>	T NT	NT NT Dry NT NT DRY NT DRY NT	NT NT 0.02 0 NT NT 0.02 <	NT N1 NT N' 0.02 0.0 NT N1 NT N1 <0.01 <0.0 NT N1	NT NT NT NT 0.01 0.01 NT NT NT NT NT 0.01 <0.00	T NT T NT 0.03 T NT T NT 01 <0.01			
08/20/96 Total Organic Halogens 0.01732 NT NT NT 09/13/96 Total Organic Halogens 0.01732 0.01 0.04 0.01 03/19/97 Total Organic Halogens 0.01732 NT NT NT 08/30/97 Total Organic Halogens 0.01732 NT NT NT 08/30/97 Total Organic Halogens 0.01732 VNT NT NT 09/21/98 Total Organic Halogens 0.01732 VNT NT NT 09/21/98 Total Organic Halogens 0.01732 VNT NT NT NT 09/21/98 Total Organic Halogens 0.01732 NT NT NT NT 09/21/98 Total Organic Halogens 0.01732 NT NT NT NT 09/21/99 Total Organic Halogens 0.01732 NT NT NT NT 09/21/2000 Total Organic Halogens 0.01732 NT NT NT NT 09/22/200	T NT	NT Dry NT NT DRY NT DRY NT DRY	NT 0.02 0 NT NT 0.02 <	NT N' 0.02 0.0 NT NT NT NT <0.01 <0.0 NT NT	NT NT 0.01 0.01 NT NT NT NT 0.01 <0.0	T NT 11 0.03 T NT T NT 01 <0.01			
0.911/3/98 Total Organic Halogens	4 0.01 C NT	Dry NT NT DRY NT DRY	0.02 0 NT NT 0.02 <	0.02 0.0 NT NT NT NT <0.01 <0.0 NT NT	0.01 0.01 NT NT NT NT 0.01 <0.0	0.03 T NT T NT 01 <0.01			
03/19/97 Total Organic Halogens	NT N	NT NT DRY NT DRY	NT NT 0.02 <	NT NT NT NT <0.01 <0.0 NT NT	NT NT NT NT 0.01 <0.0	T NT T NT 01 <0.01			
08/18/97 Total Organic Halogens	T NT N N N N N N N N N N N N N N N N N	NT DRY NT DRY	NT 0.02 < NT	NT NT <0.01 <0.0 NT NT	NT NT 0.01 <0.0	T NT 01 <0.01			
08/30/97 Total Organic Halogens - 0.01732 <0.01	2	DRY NT DRY	0.02 < NT	<0.01 <0.0 NT NT	0.01 <0.0	01 <0.01			
03/10/98 Total Organic Halogens	NT N	NT DRY	NT	NT NT					
09/21/98 Total Organic Halogens	3 0.01 D 3 0.03 D 6 NT D 7 NT NT N 7 N 7 N 7 N 8 0.04 D	DRY			MI NI	I NI			
03/18/99 Total Organic Halogens - 0.01732 NT NT NT NT 09/21/99 Total Organic Halogens - 0.01732 - 0.03 0.03 03/21/2000 Total Organic Halogens - 0.01732 NT NT NT NT 09/28/2000 Total Organic Halogens - 0.01732 NT	NT D 3 0.03 D 1 NT D 3 0.01 D 1 NT D 3 0.01 D 1 NT K 2 0.03 N 1 NT K 2 0.03 N 1 NT NT N 1 NT NT N 1 NT NT N 1 NT N N 1 NT N N 1 N N N N N 1 N N N N N N 1 N N N N				0.02 < 0.0	01 0.03	•		
09/21/99 Total Organic Halogens - 0.01732 <0.01	3 0.03 D 1 NT D 1 NT D 23 0.01 D 1 NT E 1 NT E 2 0.03 N 1 NT N 22 0.03 N 1 NT N 21 0.04 C 21 NT N 3 0.047 N						3		
03/21/2000 Total Organic Halogens - 0.01732 NT	NT D NT D 3 0.01 D T NT E T NT					0.01 D.0:	•		
06/28/2000 Total Organic Halogens - 0.01732 NT NT NT NT 09/28/2000 Total Organic Halogens - 0.01732 - 0.09 0.03 0.01 1/27/7/200 Total Organic Halogens - 0.01732 NT	T NT D 3 0.01 D 7 NT E 7 NT N 62 0.03 N 7 NT N 13 0.04 C 7 NT N 10 0.025 C 10 N 3 0.047 N		0.05		NT NT		2		
09/28/2000 Total Organic Halogens	3 0.01 D 7 NT E 7 NT N 12 0.03 N 7 NT N 13 0.04 C 7 NT N 10 0.025 C 8 NT N 1 NT N 10 0.047 N				NT NT		NT		
12/27/2000 Total Organic Halogens	NT							NT	NT
0.01732	T NT N 12 0.03 N T NT N 13 0.04 C T NT C 10 0.025 C T NT N 13 0.047 N			0.02 0.00			0.02	<0.01	0.22
09/02/2001 Total Organic Halogens - 0.01732 <0.01	22 0.03 N 1 NT N 13 0.04 C 1 NT C 10 0.025 C 1 NT N 13 0.047 N			NT NT			NT	NT	NT
03/19/2002 Total Organic Halogens - 0.01732 NT NT NT NT 09/19/2002 Total Organic Halogens - 0.01732 <0.01	T NT N 13 0.04 E T NT E 10 0.025 E T NT N 3 0.047 N				NT NT		NT	NT	NT
09/19/2002 Total Organic Halogens - 0.01732 <0.01	3 0.04 C 1 NT C 10 0.025 C 1 NT N 3 0.047 N			0.065 0.02			0.017	<0.01	0.072
03/14/2003 Total Organic Halogens - 0.01732 NT NT NT NT NT 0929/2003 Total Organic Halogens - 0.01732 <0.010	T NT D 10 0.025 D T NT N 3 0.047 N	NT			NT NT		NT	NT	NT
09/29/2003 Total Organic Halogens - 0.01732 <0.010	10 0.025 E NT N 3 0.047 N	, -		0.019 0.03			<0.01	0.015	0.052
03/08/2004 Total Organic Halogens 0.01732 NT	T NT N 3 0.047 N				NT NT		NT	NT	NT
09/27/2004 Total Organic Halogens - 0.01732 <0.010	3 0.047 N				0.010 0.01		NT	<0.010	<0.010
03/17/2005 Total Organic Halogens - 0,01732 NT NT NT NT 0,01732 NT NT<					NT NT		NT -0.010	NT	NT
09/22/2005 Total Organic Halogens - 0.01732 0.015 0.05 0.014 0.052 03/17/2006 Total Organic Halogens - 0.01732 NT NT NT NT				0.034 0.03			<0.010	0.01	0.03
03/17/2006 Total Organic Halogens - 0.01732 NT NT NT NT		DRY (NT NT .115 0.05		NT	NT	NT
				0.035 0.11 NT 0.01			<0.010 NT	0.079 NT	0.093
USIZZIZUUD TOTAI OFGANIC MAIOGENS — U.U1/3Z U.U14 U.U26 U.U16 U.U4/		DOV 1		0.036 0.03			0,063	N I <0,010	NT 0.093
• •	0 U.U47 D		U.UG U.	0.030 0.03	V3& V.U3	JU.U U	0.003	<0.010	0.093

Mean Standard Deviation (STD) Mean + 2 STD
 0.013
 0.068714
 0.033667
 0.026231

 0.00216
 0.023831
 0.013719
 0.015448

 0.01732
 0.116376
 0.061105
 0.057127

 0.015
 0.043625
 0.027571
 0.025833
 0.023857
 0.027
 0.033333
 0.034667
 0,093333

 0.005
 0.026993
 0.012205
 0.010605
 0.016269
 0.005545
 0.021013
 0.031415
 0.060854

 0.025
 0.097611
 0.051981
 0.047044
 0.056396
 0.038091
 0.07536
 0.097496
 0.215042

	MEAN+ WATER TABLE WELLS															
		ACTION	2 STD	U.G.W	D.G.W	D.G.W	D.G.W	D.G.W	D.G.W	BOTH	BOTH	BOTH	вотн	D.G.W	D.G.W	D.G.W
DATE	PARAMETER	LEVEL	WT	MW-37	MW 6	MW 28	MW 23	MW 24	MW 31	MW 25	MW 33	MW 34	MW35	MW 39	MW 40	MW 43
	ug/L															
04/23/91	Trichloroethene *	5	1			<1	<1	<1	<1	<1	_	<1				
10/15/91	Trichloroethene *	5	1			<1	<1	_	<1	<1		<1				
	Trichloroethene *	5	1			<1	<1		<1	<1	<1	<1				
	Trichloroethene *	5	1			<1	<1	<1	<1	<1.	<1	<1				
	Trichloroethene *	5	1			NT	NT	NT	NT	NT	NT	NT				
	Trichloroethene *	5	1			NT	NT	NT	NT	NT	NT	NT				
	Trichloroethene *	5	1			NT	NT	NT	NT	NT	NT	NT				
	Trichloroethene *	5	1			NT	NT	NT	NT	NT	NT	NT				
	Trichloroethene *	5	1			NT	NT	NT	NT	NT	NT	NT				
	Trichloroethene *	5	1			NT	NT	NT	NT	ΝT	NT	NT				
	Trichloroethene *	5	1			NT	NT	NT	NT	NT	NT	NT				
	Trichloroethene *	5	1	<1		NT	NT	NT	NT	NT	NT	NT	<1			
	Trichloroethene *	5	1	<1		NT	NT	ML	NT	NT	NT	NT	<1			
	Trichloroethene *	5	1	<1		NT	NT	Dry	NT	NT	NT	NT	<1			
	Trichloroethene *	5	1	NT		NT	NT	NT	NT	NT	NT NT	NT NT	NT <1			
	Trichloroethene *	5	1	<1		<1 NT	NT NT	NT DRY	NT NT	NT NT	NT	NT NT	NT			
	Trichloroethene *	5	1	NT		NT NT	NT	DRY	NT	NT NT	NT	NT	NT			
	Trichloroethene •	5		NT NT		NT NT	NT	DRY	NT	NT	NT	NT	NT			
	Trichloroethene *	5	1			NT TN	NT	DRY	NT	NT	NT	NT	NT			
	Trichloroethene *	5	1	NT NT		NT	NT	DRY	NT	NT	NT	NT	NT			
	Trichloroethene *	5	1				NT	DRY	NT	NT	NT	NT	NT			
	Trichloroethene *	5	1	NT NT		NT NT	NT NT	DRY	NT	NT	NT	NT	NT	<1	<1	<1
	Trichloroethene *	5	1	NT	<1 \ T	(1) <1	NT	DRY	NT	NT	NT	NT	DRY	<1	<1	<1
	Trichloroethene *	5	- 1		NT	NT	NT		NT TN	NT TN	NT	NT	NT	<1	<1	<1
	Trichloroethene *	5	- 1	NT NT	<1 <1	N I <1	NT	Dry NT	NT NT	NT	NT	NT	NT	<1	<1	<1
	Trichloroethene * Trichloroethene *	5 5	1	NT	NT	<1	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
	Trichloroethene *	5	- 1	NT	NT	<1	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
	Trichloroethene *	5		NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
	Trichloroethene *	5	4	NT	NT	NT	NT	DRY	NT	NT	NT	NT	NT	NT	NT	NT
	Trichloroethene *	5	•	NT	NT	NT	NT	DRY	NT	NT	NT	NT	NT	NT	NT	NT
	Trichloroethene *	Š		NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
	Trichloroethene *	ž	•	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
	Trichloroethene *	š	•	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
	Trichloroethene *	5	;	NT	NT	NT	NT	DRY	NT	NT	NT	NT	NT	NT	NT	NT
	Trichloroethene *	5	1	NT	NT	NT	NT	DRY	NT	NT	NT	NT	NT	NT	NT	NT
	Trichloroethene *	5	i	NT	NT	NT	NT	DRY	NT	NT	NT	NT	NT	NT	NT	NT
	Mean			ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERF
	Standard Deviation (STD)			ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR
	Mean + 2 STD			ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR

	1	EF-WW #	600Z/90/	10			OSA-NIO		# 10 to 10	86\J-S\70 etsCl	MM.M		68/16	710	Z9/11/90
	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	55-MM - M-			4		6 . E — ₩ #			R R				THE THE REST	
	ores	ressm ——								VlossiO ;					90'0
150.0 0 150.0	600.0 880.0	\$0.0 700.0 \$20.0	2440.0 2200.0 2640.0	פאצ פאצ פאצ	588 E88 E88	ਬਖ਼ਤ ਦਖ਼ਖ਼ ਵਖ਼ਖ਼	588 E88 E88	E88 ਵਲਲ ਵਲਲ	ਸ਼ਸ਼ਤ ਦਸ਼ਸ਼ ਵਸ਼ਸ਼	0,0426 8010.0 8636.0	60.0 0 60.0	8180.0 8800.0 8880.0			Mean Standard Deviation (STD) Mean + 2 STD
3 3 3 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	\$ 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	======================================	333555555555555555555555555555555555555	44444444444444444444444444444444444444	\$	44444444444444444444444444444444444444	\$ \$ \$ \$ 25255555555555555555555555555555555	333335555555555555555555555555555555555	44444444444444444444444444444444444444	35555555555555555555555555555555555555	\$	\$890.0 \$890.0	***************************************	mg/ls. Sinc, dissolved oly. 23/97 Zinc, dissolve
D.G.W	D.G.W	D.G.W	BOTH	HTO8	BOTH 33	BOTH MW 25	D.G.W	WW 24 D.G.W	ATER TABI D.G.W MW 23	WW 28	D.G.W	W.Đ.U 78-WM	MEAN +	ACTION LEVEL	DATE BTAD

APPENDIX D.2

Concentration Versus Time Tables & Graphs
Upper Aquifer System

		T	MEAN +													
		ACTION	2 STD	U.A.W	D.A.W	D.A.W	D.A.W	D.A.W	D.A.W	BOTH	BOTH	BOTH	BOTH	D.A.W	D.A.W	D.A.W
DATE	PARAMETER	LEVEL	AW	MW36	MW 7	MW 8	MW 29	MW 30	MW 32	MW 25	MW 33	MW 34	MW35	MW 38	MW 41	MW 42
	ug/L						_									
04/23/91	1,1-Dichloroethene *	7	1				<1	<1	<1	<1	_	<1				
10/15/91	1,1-Dichloroethene *	7	1				<1	<1	<1	<1	_	<1				
01/23/92	1,1-Dichloroethene *	7	1				_	<1	<1	<1	<1	<1				
03/23/92	1,1-Dichloroethene *	7	1				<1	<1	<1	<1	<1	<1				
09/30/92	1,1-Dichloroethene *	7	1				NT	NT	NT	NT	NT	NT				
03/05/93	1,1-Dichloroethene *	7	1				NT	NT	NT	ΝT	NT	NT				
09/21/93	1,1-Dichloroethene *	7	1				NT	NT	NT	NT	NT	NT				
03/23/94	1,1-Dichloroethene *	7	1				NT	NT	NT	NT	NT	NT				
09/16/94	1,1-Dichloroethene *	7	1				NT	NT	NT	NT	NT	NT				
03/16/95	1,1-Dichloroethene *	7	1				NT	NT	NT	NT	NT	NT				
	1,1-Dichloroethene *	7	1				NT	NT	NT	NT	NT	NT				
03/28/96	1,1-Dichloroethene *	7	1	<1			NT	NT	NT	NT	NT	МТ	<1			
06/20/96	1,1-Dichloroethene *	7	1	<1			NT	NT	NT	NT	NT	NT	<1			
09/13/96	1,1-Dichloroethene *	7	1	<1			NT	NT	NT	NT	NT	NT	<1			
03/19/97	1,1-Dichloroethene *	7	1	NT			NT	NT	NT	NT	NT	NT	NT			
06/18/97	1,1-Dichloroethene *	7	1	<1			<1	NT	ΝT	NT	NT	NT	<1			
08/30/97	1,1-Dichloroethene *	7	1	NT			NT	NT	NT	NT	NT	NT	NT			
	1,1-Dichloroethene *	7	1	NT			NT	NT	NT	NT	NT	NT	NT			
	1,1-Dichloroethene *	7	1	NT			NΤ	NT	NT	NT	NT	NT	NT			
03/19/99	1,1-Dichloroethene *	7	1	NT			NT	NT	NT	NT	NT	NT	NT			
	1,1-Dichloroethene *	7	1	NT			NT	NT	NT	NT	NT	NT	NT			
	1,1-Dichloroethene *	7	1	NT			NT	NT	NT	NT	NT	NT	NT	_	_	_
	1,1-Dichloroethene *	7	1	NT	<1	<1	NT	NT	NT	NT	NT	NT	NT	<1	<1	<1
	1,1-Dichloroethene *	7	1	NŢ	<1	<1	<1	NT	NT	NT	NT	NT	DRY	<1	<1	<1
	1,1-Dichloroethene *	7	1	NT	<1	<1	NT	NT	NT	NT	NT	NT	NT	<1	<1	<1
	1,1-Dichloroethene *	7	1	NT	<1	<1	<1	NT	NT	NT	NT	NT	NT	<1	<1	<1
	1,1-Dichloroethene *	7	1	NT	NT	NT	<1	NT	NT	NT	NT	NT	NT	NT	NT	NT
	1,1-Dichloroethene *	7	1	NT	NT	NT	<1	NT	NT	NT	NT	NT	NT	NT	NT	NT
	1,1-Dichloroethene *	7	1	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
	1,1-Dichloroethene *	7	1	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
	1,1-Dichloroethene *	7	1	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
	1,1-Dichloroethene *	7	1	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT NT	NT	NT
	1,1-Dichloroethene *	7	1	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
	1,1-Dichloroethene *	7	1	ΝŢ	NT	NT	NT NT	NT	NT NT	NT						
	1,1-Dichloroethene *	<u>′</u>	1	NT	NT	NT	NT	NT	NT	NT	NT NT	NT NT		NT	NT	NT NT
	1,1-Dichloroethene *	7	1	NT	NT	NT	NT	NT	NT	NT	NI NT	NT NT	NT NT	NT NT	NT NT	NT NT
09/22/2006	1,1-Dichloroethene *	7	1	NT	NT	NT	NT	NT	NT	NT	NI	MI	NI	NI	NI	N I
	Mean			ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR
	Standard Deviation (STD)			ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR
	Mean + 2 STD			ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR
	INCALL TO LO			Little	Litt	LINI	LINI	LIVI	LINI	LIN			LIGI	Liuv	CITAL	LIM

AMES-STORY ENVIRONMENTAL LANDFILL

MONITORING WELL SAMPLING RESULTS

883	Евв	RRA	ERR	RRR	ยหล	яяз	яяэ	яяз	RRA	яяэ	883	ERR			Mean + 2 STD	
883	ERR	яяэ	яяз	AA3	773	A93	ERR	яяз	RRR	ВЯЗ	워워크	ERR			(GTC) notistiveG brabnet	
ЯЯЭ	ЯЯЭ	яяз	Я ЯЭ	яяз	EBB	RRR	FRR	RRA	883	ERR	883	яяз			yean	¥ .
1N	TN	ΙN	ΔN	ΤN	TN	ΤN	ΔN	ΙN	ΔN	ŢΝ	TN	ΤN	ı	200	* enschaonoldonT-f,f,f	00122/2006
'TN	TN	TN	. LN	TN	ΤN	ΤN	TN	TN	ΤN	TN	TN	ΤN	l.	200	* 1,1,1-Trichloroethane	
ΤN	ŢΝ	TN	TN	ΤN	ΤN	TN	TM	TM	TN	ΤN	ΤN	TN	l.	200	* ansitaonothanT-f,f,f,f	
TN	TN	TN	TN	TN	TN	TN	TN	TM	TN	'TN	TN	TN	6	200	* ansitranolitanT-f,f,f	
TN	TN	TN	TN	ΤN	TN	TN	ΤN	TN	ŦN	TN	TN	ΤN	L	200	* anertagnothanT-f,f,f	
TN	TN	TN	TN	ΤN	TN	TN	TN	TM	ΤN	ΤN	TN	TN:	ı	200	* ansitaonolionT-f,f,f,f	
ΤN	TN	TN	TΝ	ΤN	TN	TN	TΝ	TM	TN	ΤN	ΤN	TM	L	200	* 1,1,1-Trichloroethane	
TN	TN	TN	TN	TN	TN	TN	ΤN	TN	ΤN	ΤN	TN	, LN	L	200	1,1,1-Trichloroethane *	
TN	ΙN	TN	TN	TΝ	ΤN	TN	TN	TN	TN	ΤN	TN	TN	ı	200	* ansdreooldonT-1,1,1	
TN	TN	TN	TN	ŤΝ	ΤN	ΤN	TN	TN	L>	ΤN	TN	TN	ı	200	*1,1,1-Trichloroethane	
ŤΝ	ΤN	TN	TN	ΤN	TN	TN	TN	TN	L>	TN	IN	TN	ı	200	* 1,1,1-Trichloroethane	
1>	1>	1>	ΤN	TN	TN	ΤN	ΔN	TN	1>	£>	Ļ>	TN	L	200	* ansrtteonoldonT-f,f,f	
i>	l>	l>	TN	ΤN	TN	TN	ΉN	TN	TΝ	L>	L>	ΤN	ı	200	*1,1,1-Trichloroethane	
l>	!>	L>	YRG	TΝ	TN	TN	ΤN	TN	L>	i>	L>	ΤN	ı	200	* ansrtsonothonT-f,f,f,f	
L>	1>	!>	TΝ	ΤN	TN	ΤN	TN	TM	TN	L>	L>	TN	L	200	* ensitsonoldonT-f,f,f	
			TM	ŢΝ	TN	ΤN	ΤN	TN	TN			TN	ŀ	200	* 1,1,1-Trichloroethane	
			TN	ΤN	ΤN	TN	ΔN	TN	ŦΝ			TN	ı	200	1,1,1-Trichloroethane	
			TN	TN	ΤN	TN	TN	ΤN	ΤN			TN	ı	200	* 1,1,1-Trichloroethane	
			ΤN	ΤN	ΤN	TN	TN	TN	TN			TN	ı	200	* ansrtsonothanT-f,f,f,f	
			ΤN	TN	ΤN	TN	ΤN	ΤN	TN			ŢN	ı	200	* ansrtisonothanT-1,1,1	
			TN	ΤN	TN	TN	TN	TN	ΤM			TN	ı	200	1,1,1-Trichloroethane	
			L>	ΤN	TN	TN	TN	TN	į>			L>	ŀ	200	*1,1,1-Trichloroethane	
			TN	ΤN	TN	TN	TN	TN	ŤΝ			TN	ı	200	1,1,1-Trichloroethane	
	*		1>	TM	TN	TN	TN	TN	TΝ			1>	i	00Z	* anstitection T-1,1,1	
			ļ>	ΤN	TN	TN	TN	TN	ΤN			l>	1	200	* 1,1,1-Trichloroethane	
			L>	LN	TN	ΤN	ΤN	TN	ΤN			t>	ŀ	200	*1,1-1,1-Trichloroethane	
				ŢN	TN	ΤN	ΤN	TN	TN				ŀ	500	* ansharonolitainT-f,f,f	
				ΤN	ΤN	ΤN	TN	ΤN	ΤN				ŀ	500	* 1,1,1-Trichloroethane	
		•		TN	TN	TN	TN	ΤN	TN					500	f,1,1	
				IN	TN	TN	TN	ΤN	TN				ŀ	200	* 9nsrtaonochtanT-f,f,f	
				ΤN	TN	TN	TN	TN	ΤN					500	*,1,1,1-Trichloroethane	
				ΤN	ΤN	ΤN	ΉN	TM	ΤM				į.	200	1,1,1-Trichloroethane	
				ŤΝ	ŤΝ	ΤN	1N	TN	ΤN				ŧ.	500	1,1,1-Trichloroethane	
				l>	1>	ļ>	ل >	L>	1>				ŀ	500	1,1,1,1-Trichlomethane	
				ļ>	l>	!>	l>	!>					ŀ	500	* 1,1,1	
				1>	-	1>	!>	1>	!>				ŀ	500	* anshaoronchi-f,f,f	
				l>	_	L>	i>	t>	!>					200	* ansitramonothan T.1,1,1	F0/53/00
																,
MW 42	MW 41	MW 38	MW35	MW 34	MW 33	WW 25	MW 32	MW 30	MVV 29	8 WM	7 WM	9EWM	WA	LEVEL	PARAMETER	3TAQ
W.A.G	W.A.d	w.A.a	HTOB	HTO8	BOTH	HTOB	W.A.Q	W.A.a	W.A.d	W.A.G	W.A.G	W.A.U	QTS S	NOTTOA		
L								ราาฮ	N ABHIUD	₹			MEAN +	1		<u> </u>

	I	Γ	MEAN+				AQUIFER V	VELLS								
l	[ACTION	2 STD	U.A.W	D.A.W	D.A.W	D.A.W	D.A.W	D.A.W	BOTH	BOTH	BOTH	вотн	D.A.W	D.A.W	D.A.W
DATE	PARAMETER	LEVEL	AW	MW36	MW 7	MW 8	MW 29	MW 30	MW 32	MW 25	MW 33	MW 34	MW35	MW 38	MW 41	MW 42
	ug/L															
04/23/91	1.2-Dichloroethane *	5	0.4				<1	<1	<1	<1	_	<1				
	1.2-Dichloroethane *	5	0.4				<1	<1	<1	<1	_	<1				
	1,2-Dichloroethane *	5	0.4					<1	<1	<1	<1	<1				
	1.2-Dichloroethane *	5	0.4				<1	<1	<1	<1	<1	<1				
09/30/92	1.2-Dichloroethane *	5	0.4				NT	NT	NT	NT	NT	NT				
03/05/93	1,2-Dichloroethane *	5	0.4				NT	NT	NT	NT	NT	NT				
	1.2-Dichloroethane *	5	0.4				NT	NT	NT	NT	NT	NT				
03/23/94	1,2-Dichloroethane *	5	0.4				NT	NT	NT	NT	NT	NT				
09/16/94	1,2-Dichloroethane *	5	0.4				NT	NT	NT	NT	NT	NT				
03/16/95	1,2-Dichloroethane *	5	0.4				NT	NT	NT	NT	NT	NT				
09/13/95	1,2-Dichloroethane *	5	0.4				NT	NT	NT	NT	NT	NT				
03/28/96	1,2-Dichloroethane *	5	0.4	<0.4			NT	NT	NT	NT	NT.	NT	<0.4			
	1,2-Dichloroethane *	5	0.4	< 0.4			NT	NT	NT	NT	NT	NT	<0.4			
09/13/96	1,2-Dichloroethane *	5	6.4	<0.4			NT	NT	NT	NT	NT	NT	<0.4			
	1,2-Dichloroethane *	5	0.4	< 0.4			NT	NT	NT	NT	NT	NT	<0.4			
	1,2-Dichloroethane *	5	0.4	<0.4			<0.4	NT	NT	NT	NT	NT	<0.4			
	1,2-Dichloroethane *	5	0.4	NT			NT	NT	NT	NT	NT	NT	NT			
	1,2-Dichloroethane *	5	0.4	NT			NT	NT	NT	NT	NT	NT	NT			
	1.2-Dichloroethane *	5	0.4	NT			NT	NT	NT	NT	NT	NT	NT			
	1,2-Dichloroethane *	5	0.4	NT			NT	NT	NT	NT	NT	NT	ΝT			
	1.2-Dichloroethane *	5	0.4	NT			NT	NT	NT	NT	NT	NT	NT			
03/21/2000	1,2-Dichloroethane *	5	0.4	NT			NT	NT	NT	NT	NT	NT	NT			
06/28/2000	1,2-Dichloroethane *	5	0.4	NT	<0.4	<0.4	NT	NT	NT	NT	NT	NT	NT	<0.4	<0.4	<0.4
09/28/2000	1,2-Dichloroethane *	5	0.4	NT	<0.4	<0.4	<0.4	NT	NT	NT	NT	NT	DRY	<0.4	<0.4	<0.4
12/27/2000	1,2-Dichloroethane *	5	0.4	NT	<0.4	<0.4	NT	NT	NT	NT	NT	NT	NT	<0.4	<0.4	<0.4
03/28/2001	1,2-Dichloroethane *	5	0.4	NΤ	<0.4	<0.4	<0.4	NT	NT	NT	NT.	NT	NT	<0.4	<0.4	<0.4
09/02/2001	1,2-Dichloroethane *	5	0.4	NT	NT	NT	<0.4	NT	NT	NT	NT	NT	NT	NT	NT	NT
03/19/2002	1,2-Dichloroethane *	5	0.4	NT	NT	NT	<0.4	NT	NT	NT	NT	NT	NT	NT	NT	NT
09/19/2002	1,2-Dichloroethane *	5	0.4	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
03/14/2003	1,2-Dichloroethane *	5	0.4	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
09/29/2003	1,2-Dichloroethane *	5	0.4	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
	1,2-Dichloroethane *	5	0.4	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
	1,2-Dichloroethane *	5	0.4	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
	1,2-Dichloroethane *	5	0.4	NT	NT	NT	NT	NT	NT	NT	NT.	NT	NT	NT	NT	NT
09/22/2005	1,2-Dichloroethane *	5	0.4	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
03/17/2006	1,2-Dichloroethane *	5	0.4	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
	1,2-Dichloroethane *	5	0.4	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
	Mean			ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR
	Standard Deviation (STD)			ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR
	Mean + 2 STD			ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR

моитовие well sampling results

Stymal Name Stymal Sty	983 883 888	ЕКК ЕКК ЕКК	883 883 888	ЕВВ ЕВВ ЕВВ	883 883 883	ЕВВ ЕВВ ЕВВ	883 883 888	באא באא באא	883 883 883	883 688 883	ERR ERR ERR	ЕВВ ЕВВ ЕВВ	883 883 883			nsəN Sisndard Devistion (STD) GTS S + nsəN	3
1971 1971 1972	IN	1N	1N	JN	IN	L	G Z	1,4-Dichlorobenzene	900Z/ZZ/60								
100,000,000,000,000,000,000,000,000,000														i			
Not														Ĺ		1,4-Dichlorobenzene	09/22/2005
														i		1,4-Dichlorobenzene	03/17/2005
100,000,000 110,000,000,000 120,000,000,000,000 120,000,000,000,000 120,000,000,000,000 120,000,000,000,000 120,000,000,000,000 120,000,000,000,000 120,000,000,000,000,000,000 120,000,000,000,000,000,000,000,000,000,														Ĺ		1,4-Dichlorobenzene	\$00Z/ZZ/60
1975/0003 1-70-pioloporases 7.5 1 1 1 1 1 1 1 1 1														i			
30,45003 4-Displopoperson 1,000														í		1,4-Dichlorobenzene	09/29/2003
														Ĺ		1,4-Dichlorobenzene	03/14/2003
103/13/100 1-th Origino persone 1-th Or														í			
														i			
Shwm Fww Sewm S														í			
No. Part P														ί			
1											-			Ĺ		1,4-Dichlorobenzene	12/27/2000
Application Appendication Appendication Appendication Appendication Appendication Appendication Appendication Application Appendication Application Appendication Application Applicatio														ī			
1001/1996 1-														ï			
10 10 10 10 10 10 10 10	-		-								,-	•-		í			
O3/1989 1+Dichlorobersene 75 1 NI														ĭ			
10/21/98 1,4-Dichlorobenzene 75 1 10/21/000-000-00000000000000000000000000														ĭ			
100 100														i			
100 100														i			
PATE PARAMER LEVEL LEVEL AW MW36 MW 30 MW 32 MW 32 MW 32 MW 32 MW 32 MW 32 MW 33 MW 34 MW 35 MW 36 MW 37 MW 37 MW 37 MW 37 MW 37 MW 38 MW 38 MW 38 MW 38 MW 38 MW 39														í		1,4-Dichlorobenzene	76/05/80
PART PARAMETER LEVEL PARAMETER														i			
DATE PARAMETER LEVEL AW MW36 MW 30 MW 32 MW 32 MW 32 MW 32 MW 32 MW 32 MW 33 MW 34 MW 35 MW 35 MW 35 MW 35 MW 35 MW 36 MW 37 MW 37 MW 37 MW 37 MW 38 MW 38 MW 39		•												i			
DATE PARAMETER LEVEL AW MW36 MW 72 MW 32 MW 32 MW 32 MW 32 MW 33 MW 34 MW 35 MW 35 MW 35 MW 36 MW 37 MW 36 MW 37 MW 37 MW 38 MW 38 MW 41 MW 42 MW 41 MW 42 MW 42 MW 42 MW 41 MW 42 MW 42 MW 41 MW 42 MW 43 MW 44 MW 42 MW 43 MW 43 MW 43 MW 43 MW 43 MW 44														í			
PART PARAMETER LEVEL AW MW36 MW 32 MW 33 MW 34 MW 35 MW 36 MW 37											•			Ĺ		1,4-Dichlorobenzene	96/02/90
DATE PARAMER LEVEL LEVEL AW MW36 MW 30 MW 32 MW 32 MW 32 MW 32 MW 32 MW 33 MW 34 MW 35 MW 35 MW 35 MW 35 MW 35 MW 36 MW 37 MW 37 MW 37 MW 37 MW 37 MW 38 MW 41 MW 42														í		1,4-Dichlorobenzene	96/87/20
DATE PARAMETER LEVEL AW MW36 MW 10 MW 32 MW 32 MW 32 MW 32 MW 32 MW 33 MW 34 MW 35 MW 35 MW 35 MW 36 MW 37 MW 36 MW 37 MW 37 MW 37 MW 37 MW 37 MW 38 MW 38 MW 38 MW 38 MW 39				1-									,-	ī			
DATE PARAMETER LEVEL AW MW36 MW 72 MW 32 MW 32 MW 32 MW 33 MW 34 MW 35 MW 33 MW 34 MW 35 MW 32 MW 35 MW 35 MW 35 MW 36 MW 41 MW 42 MW 36 MW 37 MW 36 MW 37 MW 37 MW 37 MW 37 MW 38 MW 41 MW 41 MW 38 MW 41 MW 39 M														i			
DATE PARAMETER LEVEL AW MW36 MW 72 MW 32 MW 32 MW 35 MW 37 MW 36 MW 41 MW 42 MW 37 MW 36 MW 37 MW 37 MW 37 MW 37 MW 37 MW 38 MW 41 MW 41 MW 42 MW 38 MW 41 MW 41 MW 42 MW 38 MW 41 MW 42 MW 38 MW 41 MW 41 MW 42 MW 38 MW 41 MW 41 MW 41 MW 42 MW 38 MW 41 MW 41 MW 42 MW 38 MW 41 MW 42 MW 38 MW 41 MW 42 MW 38 MW 41 MW 41 MW 41 MW 41 MW 41 MW 42 MW 38 MW 41 M														í			
DATE PARAMETER LEVEL AW MW36 MW 32 MW 32 MW 32 MW 32 MW 32 MW 33 MW 34 MW 35 MW 35 MW 35 MW 35 MW 35 MW 36 MW 37 MW 37 MW 37 MW 38 MW 37 MW 38 MW 38 MW 38 MW 38 MW 39														ï			
DATE PARAMETER LEVEL AW MW36 MW 72 MW 32 MW 32 MW 32 MW 33 MW 34 MW35 MW 34 MW 35 MW 32 MW 35 MW 35 MW 37 MW 36 MW 37 MW 38 MW 37 MW 38 MW 37 MW 38 MW														i			
DATE PARAMETER LEVEL AW MW36 MW 77 MW 29 MW 30 MW 32 MW 25 MW 34 MW35 MW 36 MW 37 MW 36 MW 37 MW 36 MW 41 MW 42 MW 42 MW 36 MW 37 MW 36 MW 41 MW 42 MW 41 MW 42 MW 37 MW 36 MW 41 MW 42 MW 41 MW 42 MW 37 MW 36 MW 41 MW 42 MW 42 MW 42 MW 42 MW 41 MW 42 MW 42 MW 42 MW 42 MW 41 MW 42 MW 41 MW 42 MW 42 MW 42 MW 41 MW 42 MW 42 MW 41 MW 42 MW 42 MW 41 MW 42 MW 41 MW 42 MW 42 MW 42 MW 41 MW 42 MW 42 MW 43 MW 41 MW 43 MW 41 MW 43 MW 41 MW 43 MW 42 MW 42 MW 43 MW 41 MW 43 MW 43 MW 42 MW 43 MW 41 MW 43 MW 43 MW 43 MW 42 MW 43 MW 41 MW 43 MW														í		1,4-Dichlorobenzene	£6/90/E0
DATE PARAMETER LEVEL AW MW36 MW 72 MW 32 MW 25 MW 33 MW 34 MW35 MW 41 MW 42 MW 32 MW 35 MW 35 MW 41 MW 42 MW 35 MW 36 MW 41 MW 42 MW 37 MW 36 MW 37 MW 37 MW 38 MW 41 MW 42 MW 38 MW 41 MW 48 MW 38 MW 41 MW 48 MW 39 MW														ί			
DATE PARAMETER LEVEL AW MW36 MW 70 MW 30 MW 32 MW 32 MW 33 MW 34 MW 41 MW 42 01/15/91 1,4-Dichlorobenzene 75 1 <1														ί			
DATE PARAMETER LEVEL AW MW36 MW 20 MW 32 MW 32 MW 33 MW 33 MW 34 MW 35 MW 41 MW 42 10/15/91 1,4-Dichlorobenzene 75 1 <1								-		-				í.			
DATE PARAMETER LEVEL AW MW36 MW 7 MW 30 MW 32 MW 33 MW 34 MW 35 MW 41 MW 42 04/123/91 1,4-Dichlorobenzene 75 1 <1														í			
DATE PARAMETER LEVEL AW MW36 MW 79 MW 30 MW 32 MW 33 MW 34 MW 36 MW 41 MW 42 MW 42 MW 35 MW 34 MW 36 MW 41 MW 42														í			
DYTE PRAMETER LEVEL AW MW36 MW 32 MW 32 MW 33 MW 34 MW 35 MW 34 MW 35 MW 34 MW 35 MW 34 MW 35 MW 37 MW 37 MW 37 MW 38 MW 41 MW 42 MW 41 MW 42 MW 41 MW 42 MW 41 MW 42 MW 42 MW 41 MW 42 MW					1.5		-	•		-				•			
07/181 77/181 00/181 20/181 00/181 00/181 00/181 00/181 00/181 00/181 00/181 00/181 00/181 00/181 00/181 00/181	ZE AAIN	I to AAIAI	MAA 20	CCAAM	t-C AAIAI	INIAA 22	CZ AAWI	ZC AAW	WAA 30	6Z MW	S WW	/ MW	WAASE	WA	TEVEL I		DATE
																	1
WEYN+ YOUNEER WELLS	/VI V U	/VI V U	/vi v u	n _L O8	HIUB	_nroa	ruca					7,,,,					[

			MEAN+				AQUIFER V	VELLS								
		ACTION	2 STD	U.A.W	D.A.W	D.A.W	D.A.W	D.A.W	D.A.W	ВОТН	BOTH	вотн	BOTH	D.A.W	D.A.W	D.A.W
DATE	PARAMETER	LEVEL	AW	MW36	MW 7	MW 8	MW 29	MW 30	MW 32	MW 25	MW 33	MW 34	MW35	MW 38	MW 41	MW 42
LUAIE	mg/L	LEVEL	AVV	INTAAOO	IVIVY /	MAAO	19177 23	19199 30	1811 02	WILL EG	14177 00_		NIVVOU.		1017 71	19199 42
04/23/91	Arsenic, dissolved	0.05	0.006				<0.005	<0.023	<0.005	<0.005		< 0.005				
10/15/91		0.05	0.006				<0.005		<0.005	<0.005	_	<0.005				
01/23/92	Arsenic, dissolved	0.05	0.006				\U.UU	0.006		<0.005	< 0.005	<0.005				
03/23/92	Arsenic, dissolved	0.05	0.006				<0.005	0.006		<0.005	<0.005	<0.005				
	Arsenic, dissolved	0.05	0.006				NT	NT	NT	NT	NT	NT				
09/30/92	Arsenic, dissolved	0.05	0.006				NT	NT	NT	NT	NT	NT				
03/05/93	Arsenic, dissolved	0.05	0.006				NT	NT	NT	NT	NT	NT				
09/21/93 03/23/94	Arsenic, dissolved	0.05	0.006				NT	NT	NT	NT	NT	NT				
	Arsenic, dissolved	0.05	0.006				NT	NT	NT	NT	NT	NT				
09/16/94	Arsenic, dissolved	0.05	0.006				NT	NT	NT	NT	NT	NT				
03/16/95	Arsenic, dissolved	0.05	0.006				NT	NT	NT	NT	NT	NT				
09/13/95 03/28/96	Arsenic, dissolved	0.05	0.006	<0.005			NT	NT	NT	NT	NT	NT	<0.005			
03/20/96	Arsenic, dissolved	0.05	0.006	<0.005			NT	NT	NT	NT	NT	NT	<0.005			
09/13/96	Arsenic, dissolved	0.05	0,006	0.006			NT	NT	NT	NT	NT	NT	<0.005			
03/19/97	Arsenic, dissolved	0.05	0.006	NT			NT	NT	NT	NT	NT	NT	NT			
06/18/97	Arsenic, dissolved Arsenic, dissolved	0.05	0.006	0.006			0.007	NT	NT	NT	NT	NT	0.001			
08/30/97	Arsenic, dissolved	0.05	0.006	NT			NT	NT	NT	NT	NT	NT	NT			
		0.05	0.006	NT			NT	NT	NT	NT	NT	NT	NT			
03/10/98 09/21/98	Arsenic, dissolved	0.05	0.006	NT			NT	NT	NT	NT	NT	NT	NT			
	Arsenic, dissolved	0.05	0.006	NT			NT	NT	NT	NT	NT	NT	NT			
03/18/99 09/21/99	Arsenic, dissolved	0.05	0.006	NT			NT	NT	NT	NT	NT	NT	NT			
	Arsenic, dissolved	0.05	0.006	NT			NT	NT	NT	NT	NT	NT	NT			
03/21/2000	Arsenic, dissolved	0.05	0.006	NT	0.006	0.01	NT	NT	NT	NT	NT	NT	NT	0.018	0.021	0.023
06/28/2000		0.05	0.006	NT	0.006	0.01	0.009	NT	NT	NT	NT	NT	DRY	0.013	0.027	0.031
09/28/2000	Arsenic, dissolved	0.05	0.006	NT	0.007	0.008	O.UO9	NT	NT	NT	NT	NT	NT	0.013	0.024	0.025
12/27/2000	Arsenic, dissolved	0.05	0.006	NT	0.007	0.009	0.009	NT	NT	NT	NT	NT	NT	0.017	0.024	0.028
03/28/2001	Arsenic, dissolved Arsenic, dissolved	0.05	0.006	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
03/19/2002	Arsenic, dissolved Arsenic, dissolved	0.03	0.006	NT	NT	NT	0.008	NT	NT	NT	NT	NT	NT	NT	NT	NT
09/19/2002	Arsenic, dissolved	0.01	0.006	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
03/14/2003	Arsenic, dissolved	0.01	0.006	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
09/29/2003	Arsenic, dissolved	0.01	0.006	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
03/08/2004	Arsenic, dissolved	0.01	0.006	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
09/27/2004	Arsenic, dissolved	0.01	0.006	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
03/17/2005	Arsenic, dissolved	0.01	0.006	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
09/22/2005	Arsenic, dissolved	0.01	0.006	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
03/17/2006	Arsenic, dissolved	0.01	0.006	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
09/22/2006	Arsenic, dissolved	0.01	0.006	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
03/22/2000	Augenio, Giagoirea	0.01	5.000			•••			•••		.,,					
	Mean			0.006	0.0065	0.00925	0.00825	0.008667	ERR		ERR		0.001	0.01525	0.0215	0.02675
	Standard Deviation (STD) Mean + 2 STD			0.006	0.0005 0.0075	0.000829 0.010908	0.000829 0.009908	0.003771 0.016209	ERR ERR		ERR ERR		0.001	0.002278 0.019805	0.002872 0.027245	0.003031 0.032812

	3 2 0 8	E-MW -C- E-M							bəvloss esw.m	ib, muine	28		•		centration, mg/L	
8282£.0 480700.0 6146££.0	2385.0 154410.0 235315.0	0.26975 0.0570.0 0.415889	2881.0 261310.0 287812.0	01.0 851730.0 514912.0	80.0 800.0 70.0	82820.0 82620.0 114855.0	62502.0 478850.0 866282.0	87805.0 766840.0 448965.0	0.236 869780.0 578188.0	8786S.0 888710.0 884SEE.0	8575.0 628820.0 847066.0	845.0 881510.0 576075.0			Mean Standard Devisition (STD) Mean + 2 STD	
878.0 838.8 80.0 80.0 80.0 80.0 80.0 80.0	0.304 0.306 0.306 0.306 0.306 0.306 0.306 0.306 0.306 0.306	086.0 685.0 685.0 885.0 10 11 11 12 12 12 13	281.0 181.0 281.0 281.0 281.0 281.0 281.0 281.0 281.0	880 80 80 80 80 80 80 80 80 80 80 80 80	35555555555555555555555555555555555555	22444444444444444444444444444444444444	8.8.8.8.8.8.8.8.8.8.8.8.8.8.8.8.8.8.8.	25	284.0 284.0 285.0 287.0 287.0 287.0 287.0 287.0 287.0 287.0 287.0 287.0 287.0 287.0 287.0 287.0 287.0 287.0	EFE.0 SEE.0 SEE.0 SEE.0 SEE.0 TN TN TN TN TN	706.0 855.0 755.0 71 IN 11 IN 12 IN 12 IN	265.0 265.0	012.0 012.0	2,000 2,000	hemini dissolved brinin, dissolved baivosti, d	9002/L/50 9002/L/50 9002/Z/560 9002/Z/560 9002/J2/560 9002/56/560 9002/61/560 9002/61/560 9002/61/560 9002/J2/72 9002/J2/P2/P2 9002/J2/72 9002/J2/P2/P2 9002/J2/P2/P2 9002/J2/P2
W.A.G SP.WM	W.A.G	W.A.G 85 WM	BOTH MW35	BOTH BOTH	HTO8 EE WM	BOTH MW 25	W.A.D SE WM	W.A.G WW 30	QUIFER WI D.A.W MW 29	W.A.Q 8 WM	W.A.Q 7 WM	W.A.U 8£WM	MEAN +	NOITOA LEVEL	RATEMARA	3TAQ
								3115	0.231101		61700	711 0117 1141		NIROTINOM		

		·	MEAN+				AQUIFER W	/ELLS								
1		ACTION	2 STD	U.A.W	D.A.W	D.A.W	D.A.W	D.A.W	D.A.W	вотн	вотн	BOTH	BOTH	D.A.W	D.A.W	D.A.W
DATE	PARAMETER	LEVEL	AW	MW36	MW 7	MW 8	MW 29	MW 30	MW 32	MW 25	MW 33	MW 34	MW35	MW 38	MW 41	MW 42
	ug/L	1														
04/23/91	Benzene *	5	1				<1	<1	<1	<1	_	<1				
10/15/91	Benzene *	5	1				<1	<1	<1	<1	_	<1				
01/23/92	Benzene *	5	1					<1	<1	<1	<1	<1				
03/23/92	Benzene *	5	1				<1	<1	<1	<1	<1	<1				
09/30/92	Benzene *	5	1				NT	NT	NT	NT	NT	NT				
03/05/93	Benzene *	5	1				NT	NT	NT	NT	NT	NT				
09/21/93	Benzene *	5	1				NT	NT	NT	NT	NT	NT				
03/23/94	Benzene *	5	1				NT	NŤ	NT	NT	NT	NT				
09/16/94	Benzene *	5	1				NT	NT	NT	NT	NT	NT				
03/16/95	Benzene *	5	1				NT	NT	NT	NT	NT	NT				
09/13/95	Benzene *	5	1				NT	NT	NT	NT	NT	NT				
03/28/96	Benzene *	5	1	<1			NT	NT	NT	NT	NT	NT	<1			
06/20/96	Benzene *	5	1	<1			NT .	NT	NT	NT	NT	NT	<1			
09/13/96	Benzene *	5	1	<1			NT	NT	NT	NT	NT	NT	<1			
03/19/97	Benzene *	5	1	NT			NT	NT	NT	NT	NT	NT	NT			
06/18/97	Benzene *	5	1	<1			<1	NT	NT	NT	NT	NT	<1			
08/30/97	Benzene *	5	1	NT			NT	NT	NT	NT	NT	NT	NT			
03/10/98	Benzene *	5	1	NT			NT	NT	NT	NT	NT	NT	NT			
09/21/98	Benzene *	5	1	NT			NT	NT	NT	NT	NT	NT	NT			
03/18/99	Benzene *	5	1	NŤ			NT	NT	NT	NT	NT	NT	NT			
09/21/99	Benzene *	5	1	NT			NT	NT	NT	NT	NT	NT	NT			
03/21/2000	Benzene *	5	1	NT			NT	NT	NT	NT	NT	NT	NT			
06/28/2000	Benzene *	5	1	NT	<1	<1	NT	NT	NT	NT	NT	NT	NT	<1	<1	<1
09/28/2000	Benzene *	5	1	NT	<1	<1	<1	NT	NT	NT	NT	NT	DRY	<1	<1	<1
12/27/2000	Benzene *	5	1	NT	<1	<1	NT	NT	NT	NT	NT	NT	NT	<1	<1	<1
03/28/2001	Benzene *	5	1	NT	<1	<1	<1	NT	NT	NT	NT	NT NT	NT	<1 NT	<1 NT	<1 NT
09/02/2001	Benzene *	5	1	NT	NT	NT	<1	NT	NT	NT NT	NT NT	NT	NT NT	NT	NT	NT
03/19/2002		5	1	NT	NT	NT	<1	NT	NT		NT	NT NT	NT	NT	NT	NT
09/19/2002	Benzene *	5	1	NT	NT	NT	NT	NT	NT	NT NT	NT	NT	NT	NT	NT	NT NT
03/14/2003	Benzene *	5	1	NT	NT	NT	NT	NT	NT		NT	NT	NT	NT	NT	NT
09/29/2003	Benzene *	5	1	NT	NT	NT	NT	NT	NT	NT NT	NT	NT	NT NT	NT NT	NT NT	NT
03/08/2004	Benzene *	5	1	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
09/27/2004	Benzene *	5	!	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
03/17/2005	Benzene *	5	1	NT	NT	NT	NT	NT	NT	NT	NT NT	NT NT	NT NT	NT NT	NT	NT NT
09/22/2005	Benzene *	5	1	NT	NT	NT	NT	NT	NT	NI NT	NT NT	NT NT	NT	NT	NT	NT NT
03/17/2006	Benzene *	5	1	NT	NT	NT	NT	NT	NT					NT		
09/22/2006	Benzene *	5	1	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NI	NT	NT
	Mean			ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR
	Standard Deviation (STD)			ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR
	Mean + 2 STD			ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR	

באא פאא באא	588 ERR ERR	E88 E88	유유크 유유크 유유크	ਮੁਮਤ ਮੁਮਤ ਸਮਤ	88명 문RR RRB	ЯЯЭ	яяз	8명3 8명3 8명3	באצ באצ באצ	ਦਲਲ ਦਲਲ ਵਲਲ	E88 E88	E88 E88 E88			nesM Stands Devision (GTS) GTS S + nesM	
TN	TN	ŦN	TN	ΙN	TN	ΙN	ΤN	ΤN	ΤN	İΝ	TN	ΤN	100.0	200.0	Cadmium, dissolved	9002/22/60
ΤN	TN	TN	TN	IN	ŢN	IN	ĪN	ΙN	TN	TN	IN	TN	100.0	600.0	Cadmium, dissolved	03/17/2006
ΤN	ŢN	ΤN	1N	TN	ΤN	TN	ŢΝ	ΤN	ΔN	TN	±Ν	ΤN	100.0	200.0	Cadmium, dissolved	09/22/2005
1N	ŢN	ΔN	TN	ĪN	LN	ĪN	TN	TN	ΤN	TN	TN	TN	100.0	500.0	Cadmium, dissolved	03/17/2005
ΤN	TN	TN	ΤN	ĪN	ΙN	IN	ΤN	ΤN	LΝ	TN	ΙN	ΤN	100.0	200.0	Cadmium, dissolved	09/27/200 4
ΤN	ΤN	ΙN	ŢN	ΙN	ΪŃ	IN	ŢN	ŢN	ΙN	TN	ΤN	ŢŅ	100.0	200.0	Cadmium, dissolved	03/08/2004
ΤN	TN	ΤN	IN	ĪN	ŢN	TN	ΤN	ΤN	ΙN	TM	±Ν	LΝ	100.0	0.00	Cadmium, dissolved	09/29/2003
TN	TN	TN	ΙN	IN	ĪN	ΙN	TN	ΤN	ΔN	ΤN	ΤN	ΤN	100.0	200.0	Cadmium, dissolved	03/14/2003
ΤN	TN	ΤN	TN	TN	ΤN	TN	TN	ΤN	ΤN	ŢΝ	ΤN	TN	100.0	600.0	Cadmium, dissolved	2002/61/60
ΤN	ΤN	TΝ	ΤN	TN	ΤN	TN	TN	TN	100.0>	ΤN	ΤN	TN	100.0	600.0	Cadmium, dissolved	03/18/2002
TN	ΤN	TN	. IN	īN	ŢN	TN	TN	TN	ŢN	ΤN	TN	TN	100.0	G.005	Cadmium, dissolved	1002/20/60
100.0>	100.0>	100.0>	TN	ΤN	ΤN	TN	TN	ΤN	100.0>	100.0>	100.0>	TM	100.0	200.0	Cadmium, dissolved	03/28/2001
100.0>	100.0>	100.0>	ΤN	TN	TN	TM	TN	ΤN	ΤN	100.0>	100.0>	TN	100.0	200.0	Cadmium, dissolved	12/27/2000
100.0>	100.0>	100.0>	TN	TN	TN	TN	ΤN	ΤN	100.0>	100.0>	100.0>	ΤN	100.0	200.0	Cadmium, dissolved	09/28/2000
100.0>	100.0>	100.0>	TN	TN	TN	TN	TN	TN	TN	100.0>	100.0>	ŢN	100.0	200.0	Cadmium, dissolved	06/28/2000
			TN	TN	TN	TN	TN	TΝ	TN			TN	100.0	200.0	Cadmium, dissolved	03/21/2000
			ŢN	TN	ŢN	ΤN	TN	TN	TN			ΤN	100.0	300.0	Cadmium, dissolved	66/12/60
			TN	TN	ŢN	TN	ΤN	ΤN	ΤN			TN	100.0	600.0	Cadmium, dissolved	66/81/50
			ŦN	ΤN	ΤN	TN	TN	TN	ΤN			TN	100.0	600.0	Cadmium, dissolved	86/12/60
			TN	ΤN	ΤN	TN	ΤN	TN	ΤN			TN	100.0	200.0	Cadmium, dissolved	86/01/60
			TN	ΤN	TN	ΤN	ŢΝ	ΤN	ΤN			TN	100.0	600.0	Cadmium, dissolved	76/05/80
			100.0>	ΤN	TN	TN	ŦN	ΤN	100.0>			£00.0>	100.0	200.0	Cadmium, dissolved	Z6/81/90
			100.0>	ΤN	TN	TN	TN	TN	TN			100.0>	100.0	200.0	Cadmium, dissolved	76/61/E0
			100.0>	ΤN	TN	TN	ΤN	TN	ΤN			100.0>	100.0	200.0	Cadmium, dissolved	96/13/96
			100.0>	TN	ΤN	TM	TN	ΤN	TN			100.0>	100.0	200.0	Cadmium, dissolved	96/02/90
•			100.0>	TN	TN	TN	ΙN	TN	LΝ			100.0>	100.0	200.0	Cadmium, dissolved	96/82/20
				TN	ΤN	ΤN	TN	ΤN	TN				100.0	200.0	Cadmium, dissolved	96/21/60
				TN	ΤN	ΤN	ΤN	ΤN	TN				100.0	200.0	Cadmium, dissolved	96/91/60
				TN	ŤΝ	TN	ΤN	ΤN	ΤN				100.0	200.0	Cadmium, dissolved	1 6/91/60
				ΤN	TN	TN	ΤN	ΤN	ΤN				100.0	€00.0	Cadmium, dissolved	03/23/84
				ΤN	TN	ΤN	TΝ	ΤN	ΤN				100.0	900.0	Cadmium, dissolved	66/12/60
				TN	TN	TN	TN	TN	ΤN				0.001	200.0	Cadmium, dissolved	£6/90/£0
				TN	TN	TN	ΤN	ΤN	ΤN				100.0	200.0	Cadmium, dissolved	Z6/0E/60
				100.0>	100.0>	100.0>	100.0>	100.0>	100.0>				100.0	€00.0	Cadmium, dissolved	26/53/50
				100.0>	100.0>	100.0>	100.0>	<0.001	-				100.0	900'0	Cadmium, dissolved	01/53/95
				100.0>		100.0>	100.0>	100.0>	100.0>				100.0	600.0	Cadmium, dissolved	16/21/01
				100.0>	-	100.0>	f00.0>	100.0>	100.0>				100.0	500.0	Cadmium, dissolved	16/23/91
															7/6ш	
MW 42	NW 41	85 WM	WW35	MVV 34	MW 33	WW 25	WW 32	MW 30	62 WM	8 WM	7 WM	9EWM	WA	LEVEL	RETEMARA4	3TAG
W.A.G	W.A.G	W.A.G	HTO8	HTOB	HTO8	HTO8	W.A.O	W.A.d	W.A.G	W.A.G	W.A.Q	W.A.U	arss	NOITOA	I	
L								STT3/	M ABRIUDA	<u> </u>			+ NA3M			

DATE 04/23/91	PARAMETER	ACTION	MEAN +				AQUIFER W									
	PARAMETER			U.A.W	D.A.W	D.A.W	D.A.W	D.A.W	D.A.W	BOTH	BOTH	BOTH	BOTH	D.A.W	D.A.W	D.A.W
		LEVEL	AW	MW36	MW 7	MW 8	MW 29	MW 30	MW 32	MW 25	MW 33	MW 34	MW35	MW 38	MW 41	MW 42
04/02/04	ug/L	1	7.55													
04/23/91	Carbon tetrachloride *	5	0.3				<1	<1	<1	<1	_	<1				
10/15/91	Carbon tetrachloride *	5	0.3				<1	<1	<1	<1	_	<1				
01/23/92	Carbon tetrachloride *	5	0.3				-	<1	<1	<1	<1	<1				
03/23/92	Carbon tetrachloride *	5	0.3				<1	<1	<1	<1	<1	<1				
09/30/92	Carbon tetrachloride *	5	0.3				NT	NT	NT	NT	NT	NT				
03/05/93	Carbon tetrachloride *	5	0.3				NT	NT	NТ	NT	NT	NT				
09/21/93	Carbon tetrachloride *	5	0.3				NT	NT	NT	NT	NT	NT				
03/23/94	Carbon tetrachloride *	5	0.3				NT	NT	NT	NT	NT	NT				
09/16/94	Carbon tetrachloride *	5	0.3				NT	NT	NT	NT	NT	NT				
03/16/95	Carbon tetrachloride *	5	0.3				NT	NT	NT	NT	NT	NT				
09/13/95	Carbon tetrachloride *	5	0.3				NT	NT	NT	NT	NT	NT				
03/28/96	Carbon tetrachloride *	5	0.3	<0.3			NT	NT	NT	NT	NT	NT	<0.3			
	Carbon tetrachloride *	5	0.3	<0.3			NT	NT	NT	NT	NT	NT	<0.3			
	Carbon tetrachloride *	5	0.3	<0.3			NT	NT	NT	NT	NT	NT	<0.3			
	Carbon tetrachloride *	5	0.3	NT			NT	NT	NT	NT .	NT	NT	NT			
	Carbon tetrachloride *	5	0.3	<0.3			<0.3	NT	NT	NT	NT	NT	<0.3			
	Carbon tetrachloride *	5	0.3	NT			NT	NT	NT	NT	NT	NT	NT			
	Carbon tetrachloride *	5	0.3	NT			NT	NT	NT	NT	NT	NT	NT			
	Carbon tetrachloride *	5	0.3	NT			NT	NT	NT	NT	NT	NT	NT			
	Carbon tetrachloride *	5	0.3	NT			NT	NT	NT	NT	NT	NT	NT			
	Carbon tetrachloride *	5	0.3	NT			NT	NŢ	NT	NT	NT	NT	NT			
	Carbon tetrachloride *	5	0.3	NT			NT	NT	NT	NT	NT	NT	NT			
	Carbon tetrachloride *	5	0.3	NT	<0.3	<0.3	NT	NT	NT	NT	NT	NT	NT	<0.3	<0.3	<0.3
	Carbon tetrachloride *	5	0.3	NT	<0.3	<0.3	<0.3	NT	NT	NT	NT	NT	DRY	<0.3	<0.3	<0.3
	Carbon tetrachloride *	5	0.3	NT	<0.3	<0.3	NT	NT	NT	NT	NT	NT	NT	<0.3	<0.3	<0.3
	Carbon tetrachloride *	5	0.3	NT	<0.3	<0.3	<0.3	NT	NT	NT	NT	NT	NT	<0.3	<0.3	<0.3
	Carbon tetrachloride *	2	0.3	NT	NT	NT	<0.3	NT	NT	NT	NT NT	NT	NT	NT	NT	NT
	Carbon tetrachloride *	5 5	0.3 0.3	NT NT	NT NT	NT	<0.3	NT	NT NT	NT NT	NT	NT NT	NT NT	NT NT	NT	NT
	Carbon tetrachloride *	5	0.3	NT	NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT	NT NT	NT	וא דא	NT	NT
	Carbon tetrachloride * Carbon tetrachloride *	5	0.3	NT	NT NT	NT	NT	NT NT	NT NT	NT	NT	NT TN	NT NT	NT NT	NT	NT
	Carbon tetrachloride *	5	0.3	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT NT	NT
	Carbon tetrachloride *	5	0.3	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT		NT
	Carbon tetrachloride *	5	0.3	NT	NT	NT NT	NT	NT	NT NT	NT	NT	NT	NT NT	NT	NT NT	NT NT
	Carbon tetrachloride *	5	0.3	NT.	NT	NT	NT	NT TN	NT	NT TN	NT	NT	NT	NT	NT	
	Carbon tetrachloride *	5	0.3	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT TN		NT NT
	Carbon tetrachloride *	5	0.3	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT NT	NT
	Mean			ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR
	Standard Deviation (STD)			ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR
	Mean + 2 STD			ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR

МОИТОЯІИС WELL SAMPLING RESULTS AMES-STORY ENVIRONMENTAL LANDFILL

			Secondary	MEAN+				AQUIFER V	VELLS								
			MCL	2 STD	U.A.W	D.A.W	D.A.W	D.A.W	D.A.W	D.A.W	BOTH	вотн	BOTH	вотн	D.A.W	D.A.W	D.A.W
DATE	1	PARAMETER	LEVEL	AW	MW36	MW 7	MW 8	MW 29	MW 30	MW 32	MW 25	MW 33	MW 34	MW35	MW 38	MW 41	MW 42
LENIL		mg/L															
04/23/91	Chloride		250	17,2443				4	2	6.5	13.5		6				
10/15/91	Chloride		250	17.2443				1.89	1.41	4.24	17.4	_	6.6				
01/23/92	Chloride		250	17,2443				_	2.6	42.4	43.5	44.6	10				
03/23/92	Chloride		250	17.2443				3.7	2.6	8.5	70.8	70.8	9				
09/30/92	Chloride		250	17,2443				3	2	4	83	28	3				
03/05/93	Chloride		250	17.2443				_	<10	<10	101	22.5	<10				
09/21/93	Chloride		250	17.2443				<10	<10	<10	20	26	<10				
03/23/94	Chloride		250	17.2443				<10	<10	<10	65.1	29.2	<10				
09/16/94	Chloride		250	17.2443				<10	<10	<10	82	21	<10				
03/16/95	Chloride		250	17.2443				<10	<10	<10	76	27	<10				
09/13/95	Chloride		250	17.2443				<10	<10	10	69	22	15				
03/28/96	Chloride		250	17.2443	14			4.2	68	8.2	173	22	8.9	30			
06/20/96	Chloride		250	17.2443	3.8			NT	NT	NT	NT	NT	NT	44			
09/13/96	Chloride		250	17.2443	1.7			2.2	2.6	7.3	5.3	23.6	7.1	54.2			
03/19/97	Chloride		250	17.2443	<10			<10	<10	<10	23	38	17	96			
06/18/97	Chloride		250	17.2443	<10			<10	NT	NT	NT	NT	NT	95			
08/30/97	Chloride		250	17.2443	<10			<10	<10	<10	30	19	<10	86			
03/10/98	Chloride		250	17,2443	<10			<10	<10	<10	72	24	10	37			
09/21/98	Chloride		250	17.2443	<10			<10	<10	<10	31	19	10.	81			
03/18/99	Chloride		250	17.2443	<10			<10	<10	<10	83	21	15	29			
09/21/99	Chloride		250	17.2443	<10			<10	<10	<10	52	20	26	67			
03/21/2000	Chloride		250	17.2443	NT			<10	<10	<10	55	23	45	NT			
06/28/2000	Chloride		250	17.2443	NT	<10	<10	NT	NT	NT	NT	NT	NT	NT	15	- 11	<10
09/28/2000	Chloride		250	17.2443	<10	. 11	<10	<10	<10	<10	124	24	13	DRY	18	<10	10
12/27/2000	Chloride		250	17.2443	NT	10	<10	NT	NT	NT	NT	NT	NT	NT	19	10	10
03/28/2001	Chloride		250	17.2443	<10	. 13	<10	<10	<10	<10	229	24	105	87	21	<10	10
09/02/2001	Chloride		250	17.2443	<10	14	<10	<10	<10	10	135	29	56 50	150	23	10	21
03/19/2002			250	17.2443	<10	11	<10	<10	<10	<10	142	53	52	179	26	<10	<10
09/19/2002	Chloride		250	17.2443	<10	11	<10	<10	<10	<10	181 163	44 383	25 34	111 185	29	<10	11
03/14/2003	Chloride		250	17.2443	<10	12	<10 <10	<10	<10 <10	<10 <10	165	303	23	141	31 31	<10	11
09/29/2003	Chloride		250	17.2443 17.2443	<10 <10	13		<10 <10	<10 <10	19	197	30 45	43	149	31	10 <10	11 15
03/08/2004	Chloride		250 250	17.2443	<10	14 14	34 <10	<10	<10	15	49	45 51	43 21	114	30	11	16
09/27/2004	Chloride		250	17.2443	<10	12	<10	<10	<10	12	125	48	30	235	30	10	16
03/17/2005	Chloride Chloride		250 250	17.2443	<10	16	<10	14	<10	22	49	45	21	119	34	12	21
09/22/2005	Chloride		250 250	17.2443	<10	15	<10	<10	<10	10	146	49	28	340	35	14	18
03/17/2006			250 250	17.2443	<10	13	<10	<10	<10	17	288	44	<10	142	31	<10	19
03/22/2000	Cilorae		230	17.2773	~10	13	~10	~10	~10	"	200	77	-10	172	31	~10	15

588 588 588	883 883 883	883 588 588	688 688 688	883 883 883	883 883 883	883 ERR ERR	883 883 883	883 883 883	588 588 588 588	883 883 883	883 E88 E88	883 588 588			neaM Standard Devistion (STD) GTS S + neaM	
TN	TN	TN	ΤN	TN	ΤN	ΔN	TN	ΤN	ΤN	TN	ΤN	TN	60.03	1.0	Chromium, dissolved	9002/22/60
TN	ΔN	TN	TN	1N	TN	LΝ	TN	TN	ΙN	TN	ΤN	IN	60.03	1.0	Chromium, dissolved	03/17/2006
TN	TN	TN	TN	TN	ΤN	TN	ΤN	TM	LΝ	TΝ	TN	TN	50.03	1.0	Chromium, dissolved	08/53/5009
TN	ΤN	ΤN	TN	1N	ΙN	TN	ΤN	TM	ΤN	TN	TN	LN	50.0	1.0	Chromium, dissolved	03/17/2005
TN	TN	ΙN	IN	IN	TN	ΔN	1N	1N	ΔN	1N	TN	TN	60.0	1.0	Chromium, dissolved	P002/72/60
TN	TN	TN	TN	TN	TΝ	TN	TN	TN	TN	TN	TN	TN	£0.0	1.0	Chromium, dissolved	03/08/2004
TN	TN	TN	ΤN	TM	TN	ΤN	ŦN	TN	ΤN	TN	TN	TN	60.03	1.0	Chromium, dissolved	09/29/2003
TΝ	TN	TN	TN	TM .	TN	ΤN	ŢN	TN	TN	TN	TN	TN	60.03	1.0	Chromium, dissolved	03/14/2003
TN	TN	TN	TN	TN	TN	TM	ΤN	TN	TN	TN	±Ν	TN	£0.03	1.0	Chromium, dissolved	09/19/2002
TN	TN	TN	TN	TN	TN	TN	TN	ΉN	200,0>	TN	,LN	TN	£0.0	1.0	Chromium, dissolved	03/19/2002
TN	TN	TN	TN	TN	TN	TM	TN	ΤN	TN	TN	TN	TN	£0.03	1.0	Chromium, dissolved	1002/20/60
<0.03	<0.03	<0.03	TN	TN	TN	TN	TN	TN	£0.0>	<0.03	£0.0>	TN	£0.0	1.0	Chromium, dissolved	03/28/2001
<0.03	60.0>	£0.0>	TN	TN	TN	TN	ΤN	TN	TN	<0.03	£0.0>	TN	£0.0	1.0	Chromium, dissolved	12/27/2000
<0.0>	£0.0>	60.0>	DBX	TN	TN	TN	TN	ΤN	60.0>	£0.0>	£0.0>	TN	60.03	1.0	Chromium, dissolved	09/28/2000
<0.03	<0.03	<0.03	TM.	ΤN	TN	ΤN	TN	ΤM	ΤM	£0.0>	<0.03	TN	£0.03	1.0	Chromium, dissolved	06/28/2000
			TN	TN	TN	TN	TN	TN	ΤN			TN	60.03	1.0	Chromium, dissolved	03/21/2000
			ΤN	TN	ΤN	TN	ΤN	TM	ΤN			TN	60.03	1.0	Chromium, dissolved	08/51/88
			TN	TN	ΙN	TN	ΤN	ΤN	ΤN			TN	£0.0	1.0	Chromium, dissolved	66/81/60
			TN	TN	ΔN	TM	TN	TN	TN			TN	60.0	1.0	Chromium, dissolved	86/12/60
			TN	TN	TN	TN	TN	TN	ΤM			TN	60.03	1.0	Chromium, dissolved	86/01/60
			TN	TN	ΤN	TN	ΤN	ΤN	TN			TN	£0.0	1.0	Chromium, dissolved	76/05/80
			£0.0>	TM	ΤN	TN	TN	TN	<0.03			60.0>	60.03	1.0	Chromium, dissolved	76/81/90
			TN	ŢN	TN	TN	TN	ΤN	ΤN			TN	60.03	1.0	Chromium, dissolved	76/61/60
			<0.03	TN	TN	TN	ŢΝ	TM	TN			<0.03	60.03	1.0	Chromium, dissolved	96/21/60
			<0.03	TN	TN	TN	ΤN	TM	ΤN			50.0>	60.03	1.0	Chromium, dissolved	96/07/90
			50.0>	TM	TN	ΤN	ΤN	ΤN	TM			50.0>	60.03	1.0	Chromium, dissolved	96/82/20
				ΤN	ΤN	TN	TN	TM	TΝ				60.03	1.0	Chromium, dissolved	96/13/62
				TN	ΤN	TN	TN	TM	TΝ				60.0	1.0	Chromium, dissolved	96/91/E0
				TN	TN	ΤN	TN	ΤN	TM				60.03	1.0	Chromium, dissolved	1 6/91/60
				TN	TN	ΤN	ŢΝ	ΤN	TN				50.03	1.0	Chromium, dissolved	03/23/84
				TN	TN	TM	TN	ΤN	ΤN				£0.0	1.0	Chromium, dissolved	09/21/93
				TN	ΤN	TN	TN	TM	TN				60.03	1.0	Chromium, dissolved	66/90/60
				ΙN	TN	ТИ	ΤN	ŦΝ	TN				60.03	1.0	Chromium, dissolved	09/30/95
				£0.0>	<0.03	<0.03	<0.03	60.0>	£0.0>				60.03	1.0	Chromium, dissolved	03/23/92
				<0.03	50.0>	50.0>	50.0>	<0.0>	_				60.03	1.0	Chromium, dissolved	26/62/10
				<0.03		<0.0>	<0.03	<0.0>	£0.0>				60.03	1.0	Chromium, dissolved	16/51/01
				<0.03	-	£0.0>	<0.0>	<0.0>	50.0>				60.03	1.0	Chromium, dissolved	16/23/40
	·														უ <i>/</i> 6w	
MW 42	FA WM	85 WM	MW35	MW 34	MW 33	WW 25	MW 32	MW 30	62 WW	8 WM	7 WM	WW36	WA	LEVEL	RETEMARAS	3TAQ
W.A.d	W.A.d	W.A.Q	HTO8	HTO8	HT08	HTO8	W.A.G	W.A.G	W.A.G	W.A.G	W.A.G	W.A.U] oπs s	NOITOA	,	1
L								S773/	N RETIDO/	<u>/</u>			+ NA3M			

Γ	T		MEAN +				AQUIFER W	ÆLLS								
1	1	ACTION	2 STD	U.A.W	D.A.W	D.A.W	D.A.W	D.A.W	D.A.W	BOTH	BOTH	BOTH	вотн	D.A.W	D.A.W	D.A.W
DATE	PARAMETER	LEVEL	AW	MW36	MW 7	MW 8	MW 29	MW 30	MW 32	MW 25	MW 33	MW 34	MW35	MW 38	MW 41	MW 42
03/16/95	5 Conductivity, us/cm	-	885.7964				280	300	390	510	420	550				
09/13/95	5 Conductivity, us/cm	-	885.7964				360	400	740	770	720	660				
	6 Conductivity, us/cm	_	885.7964	490			340	400	580	640	500	460	520			
	6 Conductivity, us/cm		885.7964	290			NT	NT	NT	NT	NT	NT	460			
	6 Conductivity, us/cm	-	885.7964	280			330	350	510	60	500	570	440			
	7 Conductivity, us/cm	-	885.7964	340			350	400	570	620	590	580	600			
	7 Conductivity, us/cm	_	885.7964	280			250	NT	NT	NT	NT	NT	380			
	7 Conductivity, us/cm	-	885.7964	280			310	350	430	540	410	490	490			
	3 Conductivity, us/cm	-	885.7964	410			370	410	630	510	360	470	390 490			
	3 Conductivity, us/cm	-	885.7964	280			300	420	500	460	590	540				
	9 Conductivity, us/cm	-	885.7964	625			628	812	1208	1370	902	1438	1005			
	Conductivity, us/cm	-	885.7964	280			300	420	500	460	590	540	490			
	Conductivity, us/cm	-	885.7964	NT			NT	NT	NT	NT	NT	NT	NT NT	70^	eco	707
	Conductivity, us/cm	_	885.7964	NT	621	617	NT	NT	NT	NT	NT	NT 1200	DRY	782	656 716	737
	Conductivity, us/cm	-	885.7964	688	680	700	1245	857	1218	1083	1009 NT	1209 NT	NT	909 923		837
	Conductivity, us/cm	-	885.7964	NT	717	728	NT	NT	NT	NT			N I 1246		744	848
	Conductivity, us/cm	-	885.7964	812	764	794	725	1000	1304	1161	1730	3000 1455	1246 1889	1080 960	826 681	986
	1 Conductivity, us/cm	_	885.7964	687	674	586	NT	845	1137	1455	1098 1313	1455 NT	1889	1048	722	844
	2 Conductivity, us/cm	-	885.7964	NT	684	663	724	914	1180	1490	1313	1287	1167	1048	665	854
	2 Conductivity, us/cm	-	885.7964	640	703	673	686	805	1050	1225 833	1182 732	1020	709	944	614	800 798
	3 Conductivity, us/cm	-	885.7964	499	731	710	658	795	1056		732 890	1020	709 886	944 844	588	798 708
	3 Conductivity, us/cm	-	885.7964	584	606	593	615	724	886	1241	1154	1237	1124	1142	764	708 820
	Conductivity, us/cm	-	885.7964	646	704	709	787	886	1256	1360 1546	1154	1237	1124 995	1142	790	820 890
	Conductivity, us/cm	-	885.7964	750	822	774	760	848	1216	1546 1407	1228	1432	995 1275	1264	790 670	745
	Conductivity, us/cm	_	885.7964	650	704	709	733	742	1028		1228	1432 929	852	812	636	745 872
	5 Conductivity, us/cm	_	885.7964	638	592	579	611	852	1246	1598		929 1775	852 1589	1166	794	872 956
	3 Conductivity, us/cm	-	885.7964	709	779	759	762	949	1293	1685	1451 1225	1775 1495	1089	1166	794 679	956 887
09/22/2006	3 Conductivity, us/cm	-	885.7964	680	686	656	670	873	1195	1785	1225	1490	ופטו	1004	0/8	991

ЕВВ ЕВВ ЕВВ	883 883 883	ਦਲਲ ਦਲਲ ਵਲਲ	883 883 883	ਬਬਤ ਬਬਤ ਬਬਤ	ЕВВ ЕВВ ЕВВ	8원크 8원크 8원크	883 883 883	ਬਖਤ ਬਖਤ ਬਖਤ	באא באא באא	ਬਖ਼ਤ ਵਖ਼ਖ਼ ਵਖ਼ਖ਼	성성3 성성3 성성3	883 883 883			Mean Mean Devision (STD) Mean + 2 STD	
88 99 99 99 99 99 99 99 99 99 99	A	# \$45555555555666666666666666666666666666	ਸ਼ ਸ਼ ਫ਼	555555555555555555555555555555555555555	2222222222222222222222222	2222222222222222222222222222222	252525252525252555555555555555555555555	252525252525555555555555555555555555555	22222255522222222222222222222222222222	88.88888888888888888888888888888888888	######################################	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	\$0.00 \$0.00		72,193 Copper, dissolved (12,193 Copper, dis	111 I I I I I I I I I I I I I I I I I I
				50.0> TN TN	50.0> TN TN	60.0> 60.0> TN TN	60.0> 60.0> TN TN	60.0> 60.0> TN TN	E0.0> TN TN				E0.0 E0.0 E0.0 E0.0	6.1 6.1 6.1 6.1	72/92 Copper, dissolved 72/92 Copper, dissolved 730/92 Copper, dissolved 705/93 Copper, dissolved	:/60 :/60
				60.0> 60.0> 60.0>	— — 50.0>	£0.0>	£0.0>	£0.0>	<0.0> \$0.0>				£0.0 £0.0	8.1 8.1	mg/L /23/91 Copper, dissolved /15/91 Copper, dissolved	/01 /01
W.A.G	D.A.W	D.A.W 88 WM	HTOB	HTO8	HTO8	BOTH MW 25	W.A.G SE WM	D.A.W D.A.W	OUFER W D.A.W MW 29	W.A.G 8 WM	W.A.G T.WM	W.A.U aswm	+ MABM GT8 S WA	ACTION LEVEL	PARAMETER 31	TAŒ

	1	T	MEAN+				AQUIFER V	VELLS								
	ļ	ACTION	2 STD	U.A.W	D.A.W	D.A.W	D.A.W	D.A.W	D.A.W	вотн	вотн	BOTH	BOTH	D.A.W	D.A.W	D.A.W
DATE	PARAMETER	LEVEL	AW	MW36	MW 7	MW 8	MW 29	MW 30	MW 32	MW 25	MW 33	MW 34	MW35	MW 38	MW 41	MW 42
	mg/L															
04/23/91	I Iron, dissolved	_	1.050829				0.05	< 0.03	< 0.09	0.177	-	0.133				
10/15/91	I Iron, dissolved	_	1.050829				1.3	0.546	0.116	0.205	-	0.767				
	Iron, dissolved	_	1,050829				_	<0.03	< 0.03	< 0.03	<0.03	<0.03				
	Iron, dissolved	_	1.050829				0.743	< 0.03	0.048	0.121	0.052	<0.03				
	2 Iron, dissolved	_	1.050829				< 0.03	<0.03	<0.03	< 0.03	0.033	0.043				
03/05/93	lron, dissolved	-	1.050829				_	<0.03	<0.03	<0.03	0.035	<0.03				
	Iron, dissolved	_	1.050829				< 0.03	<0.03	1.07	<0.03	2.46	0.05				
03/23/94	I Iron, dissolved	_	1.050829				<0.03	0.072	2.29	<0.03	9.65	0.084				
09/16/94	Iron, dissolved	_	1.050829				0.037	0.059	4.3	0.05	2.9	0.55				
03/16/95	fron, dissolved	-	1.050829				<0.03	0.111	2.55	0.038	1.24	0.47				
	Iron, dissolved	_	1.050829				<0.03	0.131	2.2	<0.03	8.5	0.317				
03/28/96	iron, dissolved	_	1.050829	<0.03			<0.03	0.228	2.68	<0.03	5.77	0.386	0.067			
06/20/96	fron, dissolved	-	1.050829	<0.03			NT	NT	NT	NT	NT	NT	0.927			
09/13/96	tron, dissolved	_	1.050829	<0.03			<0.03	0.112	2.37	0.134	2.27	1.3	1.02			
03/19/97	Iron, dissolved	_	1.050829	0.329			0.032	0.573	4.65	<0.03	7.18	<0.03	0.484			
06/18/97	Iron, dissolved	_	1.050829	<0.03			0.086	NT	NT	NT	NT	NT	0.523			
08/30/97	Iron, dissolved	_	1.050829	0.559			0.064	0.144	6.19	0.076	5.02	1.93	5.05			
03/10/98	Iron, dissolved	_	1.050829	1.09			0.041	0.057	4.41	0.717	5.83	1.52	0.5			
09/21/98	Iron, dissolved	_	1.050829	0.61			0.085	0.059	1.63	0.166	2.2	3.09	0.415			
03/18/99	Iron, dissolved	_	1.050829	0.767			0.052	0.48	6.08	0.131	5.64	4.78	0.162			
09/21/99	Iron, dissolved	_	1.050829	0.519			0.043	0.197	2.99	0.076	3.99	5.53	0.337			
03/21/2000	Iron, dissolved	-	1.050829	NT			0.252	0.447	2.1	0.371	5.69	4.15	NT			
06/28/2000	Iron, dissolved	-	1.050829	NT	0.146	2.71	NT	NT	NT	NT	NT	NT	NT	0.904	0.073	1.61
09/28/2000	lron, dissolved	-	1.050829	<0.03	0.533	3.23	0.031	0.175	0.035	<0.03	0.303	3.3	DRY	0.198	<0.03	2.58
12/27/2000	lron, dissolved	_	1.050829	NТ	0.412	2.22	NT	NT	NT	NT	NT	NT	NT	0.138	0.909	2.3
03/28/2001	Iron, dissolved	-	1.050829	0.196	0.094	2.1	<0.03	0.08	0.493	<0.03	2.7	<0.03	0.108	0.049	1.24	2.12
09/02/2001	Iron, dissolved	-	1.050829	0.103	0.244	2.6	<0.03	0.088	3.07	<0.03	4.47	6.97	0.168	0.197	0.783	0.923
03/19/2002	! Iron, dissolved	-	1.050829	<0.03	0.178	2.91	<0.03	0.074	1.14	<0.03	4.46	0.654	<0.03	0.292	<0.03	1.99
09/19/2002	! Iron, dissolved	_	1.050829	<0.03	0.184	3.4	<0.03	0.351	1.11	<0.03	4.12	5.65	<0.03	0.041	<0.03	1.96
03/14/2003	lron, dissolved	-	1.050829	<0.03	1.31	4.11	0.153	0.192	1.26	<0.03	4.95	4.67	<0.03	0.795	0.103	1.37
09/29/2003	tron, dissolved	_	1.050829	<0.030	0.178	1.28	<0.030	0.296	1.29	<0.030	0.556	5.63	0.078	0.536	0.45	1.37
03/08/2004	Iron, dissolved	-	1.050829	0.073	0.128	3.82	<0.03	<0.03	<0.03	0.121	7.99	0.231	0.109	2.19	2.23	3.1
09/27/2004	Iron, dissolved	_	1.050829	<0.030	0.267	4.16	0.034	0.454	<0.030	0.034	2.56	0.39	<0.030	0.229	2.23	1.94
03/17/2005	Iron, dissolved	_	1.050829	<0.030	1.96	3.17	0.039	0.218	<0.030	0.073	6.07	0.046	<0.030	0.905	<0.030	2.26
09/22/2005	fron, dissolved	_	1.050829	<0.030	1.04	4.42	0.032	0.086	<0.030	0.034	5.11	0.666	0.042	0.198	1.19	1.72
03/17/2006	Iron, dissolved	_	1.050829	0.057	1.32	4.82	0,066	0.073	<0.030	0.03	4.99	<0.030	<0.030	0.27	2.52	<0.030
09/22/2006	tron, dissolved	-	1.050829	0.039	1.44	4.95	0.096	0.246	0.044	0.048	3.83	0.074	<0.030	0.059	1.82	2.01

Γ	WW-42	1	8002/90/10		4 W W W	+00Z/+1/10 # #. #		# ###		NZ170			\$6/16/10 \$	KA-A-#	0	
	25-WM 36-WM 36-WM 36-WM 36-WM 36-WM	- <u>A</u>					W R E							000	2000 Contraction	
	OTS S + rissim 85-wm 82-wm 7-wm 05-wm 25-wm							: ! ! :						\$ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	- 10.0 - 0.00 - 60.00 - 60.00	
<u> </u>	U13 L 7 444/								SSOIVed Siles wels	ead, Di	1			<u> </u>		
·o	ЕВВ ЕВВ ЕВВ	ЕВВ ЕВВ ЕВВ	ЕКК ЕКК ЕКК	10.0 0 10.0	ERR ERR ERR	700.0 0 700.0	2600.0 2100.0 2210.0	900.0 0 900.0	700.0 0 700.0	ЕКК ЕКК ЕКК	ERR ERR ERR	ERR ERR ERR			Mean Standard Devision (STD) GTS S + DSM	
10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00	IN I	200.0> 200.0> 200.0> 200.0>	55555555555555555555555555555555555555	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6		00.00 00	800.0	\$000,000 \$00	200 0 200 0 0 0 0	200.0> 200.0> 200.0>	2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	55555555555555555555555555555555555555	\$00 0 \$00 0	210.0 210.0	head, dissolved Lead, dissolve	9002// 90
WM 4	IÞ MW	8E WM	WW35	WAA 34	EE MW	WM S2	WW 32	WW 30	6Z MW	8 WW	7 WW	WW36	WA	TEVEL	PARAMETER	31,

MONITORING WELL SAMPLING RESULTS

DATE PARAMETER LEVEL ACTION LEVEL AW MW 8 MW 29 MW 30 MW 25 MW 30 MW 32 MW 25 MW 33 MW 34 MW 35 MW 38 MW 41 MW 42 MW 42 MW 25 MW 30 MW 32 MW 25 MW 38 MW 41 MW 42 MW 43 MW 43 MW 43 MW 44 MW 42 MW 42 MW 42 MW 42 MW 45 MW 45 MW 48 MW 41 MW 42 MW 42 MW 45 MW 45 MW 48 MW 41 MW 42 MW 42 MW 45 MW 45 MW 45 MW 48 MW 41 MW 42 MW 42 MW 45 MW 4		T		MEAN +				AQUIFER V	VELLS	·							
Magnesium, dissolved	- 1	1		2 STD													
04/23/91 Magnesium, dissolved	DATE	PARAMETER	LEVEL	AW	MW36	MW 7	MW 8	MW 29	MW 30	MW 32	MW 25	MW 33	MW 34	MW35	MW 38	MW 41	MW 42
10/15/91 Magnesium, dissolved																	
01/23/92 Magnesium, dissolved			-														
03/23/92 Magnesium, dissolved			_														
09/30/92 Magnesium, dissolved - 45.47475 NT																	
03/05/93 Magnesium, dissolved																	
09/21/93 Magnesium, dissolved																	
03/23/94 Magnesium, dissolved																	
O9/16/94 Magnesium, dissolved																	
03/16/95 Magnesium, dissolved																	
09/13/95 Magnesium, dissolved																	
03/28/96 Magnesium, dissolved - 45.47475 43.7 NT NT NT NT NT NT NT NT NT 48.6 06/20/96 Magnesium, dissolved - 45.47475 31.3 NT																	
06/20/96 Magnesium, dissolved - 45.47475 31.3 NT																	
09/13/96 Magnesium, dissolved 45.47475 32.6 NT																	
03/19/97 Magnesium, dissolved — 45,47475 NT NT<																	
06/18/97 Magnesium, dissolved - 45.47475 29 34.4 NT NT NT NT NT NT 45 08/30/97 Magnesium, dissolved - 45.47475 NT																	
08/30/97 Magnesium, dissolved 45.47475 NT O3/10/98 Magnesium, dissolved 45.47475 NT																	
03/10/98 Magnesium, dissolved - 45.47475 NT <																	
09/21/98 Magnesium, dissolved — 45.47475 NT																	
03/18/99 Magnesium, dissolved – 45.47475 NT																	
09/21/99 Magnesium, dissolved — 45.47475 NT																	
03/21/2000 Magnesium, dissolved – 45.47475 NT NT NT NT NT NT NT NT NT				45.47475	NT			NT	NT	NT	NT	NT	NT	NT			
06/28/2000 Magnesium, dissolved — 45,47475 NT 29.1 27.8 NT 36.7 32.4 40						20.1	27.8								36.7	32.4	40
09/28/2000 Magnesium, dissolved - 45,47475 NT 27.7 26.4 33.2 NT NT NT NT NT DRY 31.6 32 41.9																	
12/27/2000 Magnesium, dissolved – 45.47475 NT 28.8 27.8 NT NT NT NT NT NT NT NT 33.6 33.8 41.8																	
03/28/2001 Magnesium, dissolved - 45,47475 NT 26.9 25.7 29.2 NT NT NT NT NT NT NT 35.6 31.4 38.5																	
09/02/2001 Magnesium, dissolved - 45.47475 NT			_														
03/19/2002 Magnesium, dissolved 45.47475 NT			-								NT		NT				
09/19/2002 Magnesium, dissolved - 45.47475 NT			_						NT		NT	NT	NT	NT			
03/14/2003 Magnesium, dissolved 45.47475 NT			_	45,47475	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
09/29/2003 Magnesium, dissolved – 45.47475 NT			_	45.47475	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
03/08/2004 Magnesium, dissolved – 45.47475 NT			_	45.47475		NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
09/27/2004 Magnesium, dissolved - 45.47475 NT			-				NT										
03/17/2005 Magnesium, dissolved – 45.47475 NT			_				NT										
09/22/2005 Magnesium, dissolved – 45.47475 NT	09/22/2005	Magnesium, dissolved	_														
03/17/2006 Magnesium, dissolved 45.47475 NT			-														
09/22/2006 Magnesium, dissolved 45.47475 NT	09/22/2006	Magnesium, dissolved	-	45.47475	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT

34.15 28.125 26.925 28.3 36.7 61.65 44.325 5.662376 0.878564 0.909327 4.456777 3.637994 3.806245 10.96207 48.725 50.875 18.1599 4.815275 Mean Standard Deviation (STD) Mean + 2 STD 44.325 61.85 3.85 45.47475 29.88213 28.74365 37.21355 43.97599 69.26249 66.24913 69.55 85.04479 60.50555

6명 (명공 (명공	58명 동요금 동요명	583 E88 E88	883 883 883	EBB	883	883	RRE	ЯЯЭ 유유크 유유크	883 883 883	883 883 883	883 883 883	E88 E88 E88			Mean Standard Deviation (STD) Mean + S STD	
TN	TN	TN	ΤN	ΙN	TN	ΤN	JN	TN	ΙN	ТИ	ΙN	ΙN	2000.0	200.0	Mercury, dissolved	
TN	TN	TN	TN	ΤN	TN	TN	TN	ΤN	TN	±Ν	TN	TN	2000.0	200.0	Mercury, dissolved	
TN	TN	TN	TN	TΝ	ΙN	TN	TN	TN	TN	LΝ	TN	TN	6000.0	Z00.0	Mercury, dissolved	
TN	TΝ	TN	TN	TN	±Ν	TN	TΝ	ΤN	TN	TN	TN	TM	2000.0	0.002	Mercury, dissolved	
TN	ΤN	TN	TN	TN	TN	ΤN	TN	ΤN	TN	TN	TN	TN	2000.0	200.0	Mercury, dissolved	₽002/ \Z
TN	TN	TN	TM	ΤN	TN	TN	TN	TN	TN	TN	,LN	ΉN	2000.0	200.0	Mercury, dissolved	
TN	ΤN	TN	TN	TN	TN	TN	TM	ΤN	TN	TN	TN	TM	2000.0	200.0	Mercury, dissolved	
TN	TΝ	TN	ΔN	ΤN	ΤN	TN	ΤN	ΙN	TN	TN	TN	TN	2000.0	200.0	Mercury, dissolved	
ΤN	TN	TN	ΤN	TN	TN	TN	TN	TN	TN	TN	TM	TN	2000.0	200.0	Mercury, dissolved	
TN	TN	TN	ΤN	TN	TN	ΤN	LΝ	TN	2000,0>	TN	ΤN	1N	2000.0	200.0	Mercury, dissolved	
TN	ΤN	TN	TN	ΤN	TN	TN	TN	TM	TN	TN	TN	TN	9000.0	200.0	Mercury, dissolved	
<0.0005	<0.0005	C000.0>	ΤN	TN	TN	LΝ	ΤN	TN	2000,0>	2000.0>	2000.0>	TΝ	2000.0	Z00.0	Mercury, dissolved	
<0.0005	<0.0005	5000.0>	TN	TN	TN	TN	TN	TN	TN	<0.0005	<0.0005	TN	2000.0	200.0	Mercury, dissolved	
<0.0005	<0.0005	2000.0>	YAO	TN	ΉN	TN	TN	TN	2000.0>	<0.0005	<0.0005	TN	2000.0	200.0	Mercury, dissolved	
<0.0005	<0.0005	2000.0>	ΤN	TN	TN	TN	TN	TN	TN	2000.0>	2000.0>	TΝ	2000,0	200.0	Mercury, dissolved	
			TN	ΙN	TN	TN	TN	TN	TN			TM	2000.0	200.0	Mercury, dissolved	
			TN	ΤN	ΤN	TN	TN	TN	TN			TN	2000.0	Z00.0	Mercury, dissolved	
			TN	ΤN	TN	ΤN	TN	TN	TN			TN	2000.0	200.0	Mercury, dissolved	
			TN	TM	TN	TN	TM	1N	TN			TN	2000.0	200.0	Mercury, dissolved	
			ΤN	TN	ΤN	TN	ΤŃ	TN	TN			ΤN	6000.0	200.0	Mercury, dissolved	
			TN	TN	TN	TN	ΤN	TN	TN			TN	2000.0	200.0	Mercury, dissolved	
			2000.0>	ΤŃ	ΤN	ΤN	ΤN	ΤŃ	2000.0>			2000.0>	0.0005	200.0	Mercury, dissolved Mercury, dissolved	
			TN	ΤŃ	TN	ΤN	TN	ΤN	TN			TN	2000.0	200.0	Mercury, dissolved	
			5000.0>	ΤŃ	TN	TN	TN	TN TN	TN			2000.0> \$00.05	2000.0 2000.0	Z00.0	Mercury, dissolved	
			5000.0>	ΤŃ	ΙN	TN	TN TN	TN TN	TN TN			2000.0>	5000.0	200.0	Mercury, dissolved	
			5000 0>	TN	TN TN	TN TN	TN	TN	TN TN			9000 0>	2000.0	200.0	Mercury, dissolved	
				ΤN		TN	TN	TN	TN TV				2000.0	200.0	Mercury, dissolved	
				TN TN	TN	TN TN	TN TN	TN	TN TV				2000.0	200.0	Mercury, dissolved	
				TN.	TN		TN TN	TN	TN TN				2000.0	200.0	Mercury, dissolved	
				TN TN	TN TN	TN TN	TN TN	TN	TN				2000.0	200.0	Mercury, dissolved	
				TN	TN	TN	TN TN	TN	TN				5000.0	200.0	Mercury, dissolved	
				TN TN	TN	TN	TN TN	TN TN	TN				2000.0	200.0	Mercury, dissolved	
				₹000.0>	2000.0>	2000.0>	2000.0>	2000.0>	2000.0>				2000.0	0.002	Mercury, dissolved	
				\$0000 \$0000	<0.0005	2000.0>	3000.0>	2000.0>	3000 02				2000.0	Z00.0	Mercury, dissolved	
				<0.0005 2000 0>	90000	2000.0>	3000.0>	2000.0>	5000.0>				3000.0	200.0	Mercury, dissolved	
				100.0>	_	100.0>	100.0>	100.0>	100.0>				2000.0	200.0	Mercury, dissolved	
				,000		200 02	-50 0-	, 50 O	-00 0-				30000	, occ	7/8w	
WW 42	IAW 41	85 WM	WW35	WW 34	WW 33	WM S2	WW 32	WM 30	MW 29	8 WW	7 WM	WW36	WA	TEVEL	PARAMETER	3TA
W.A.d	W.A.d	W.A.d	HTOB	HTO8	HTOB	HTOB	W.A.d	W.A.G	W.A.G	W.A.d	W.A.d	W.A.U	qrss	NOITOA		
		u							W REER W				WEVN +	1		l

MONITORING WELL SAMPLING RESULTS

			MEAN +				AQUIFER V	VELLS								
1		ACTION	2 STD	U.A.W	D.A.W	D.A.W	D.A.W	D.A.W	D.A.W	BOTH	BOTH	BOTH	BOTH	D.A.W	D.A.W	D.A.W
DATE	PARAMETER	LEVEL	AW	MW36	MW 7	MW 8	MW 29	MW 30	MW 32	MW 25	MW 33	MW 34	MVV35	MW 38	MW 41	MW 42
	mg/L															
04/23/91	Nitrogen, Ammonia	-	1.2				<0.5	<0.5	<0.5	<0.5	_	<0.5				
10/15/91	Nitrogen, Ammonia	-	1.2				<0.5	<0.5	<0.5	<0.5		<0.5				
	Nitrogen, Ammonia	-	1.2				-	<1.0	<1.0	<1.0	<1.0	<1.0				
	Nitrogen, Ammonia	-	1.2				<1.0	<1.0	<1.0	<1.0	<1.0	<1.0				
	Nitrogen, Ammonia	_	1.2				<1	<1	<1	<1	<1	<1				
	Nitrogen, Ammonia	-	1.2				_	<1	<1	<1	1.7	<1				
	Nitrogen, Ammonia	-	1.2				<1	<1	<1	<1	1.7	<1				
	Nitrogen, Ammonia	-	1.2				<1	<1	<1	<1	1.8	1.1				
	Nitrogen, Ammonia	-	1.2				<1	<1	<1	<1	1.8	1.3				
	Nitrogen, Ammonia	-	1.2				<1	<1	<1	<1	1.6	1				
	Nitrogen, Ammonia	-	1.2				<1	<1	<1	<1	1.5	1.2	-4			
	Nitrogen, Ammonia	_	1.2	1.2			<1	<1	<1	<1	1.4	1.8	<1			
	Nitrogen, Ammonia	-	1.2	<1			NT	NT	NT	NT	NT	NT	<1			
	Nitrogen, Ammonia	_	1.2	<1			<1	<1	<1	<1	1.6	1.4	<1			
	Nitrogen, Ammonia	-	1.2	<1 <1			<1	<1 NT	<1 NT	<1 NT	1.5 NT	<1 NT	<1 <1			
	Nitrogen, Ammonia	-	1.2				<1						<1			
	Nitrogen, Ammonia	_	1.2	<1			<1	<1	<1	<1	1.4 1.4	1.4 1.4	<1			
	Nitrogen, Ammonia	_	1.2	<1			<1	<1	<1	<1		1.4	<1			
	Nitrogen, Ammonia	_	1.2	<1			<1	<1	<1	<1	1.4		<1 <1			
	Nitrogen, Ammonia	-	1.2	<1 <1			<1	<1 <1	<1 <1	<1 <1	1.4 1.5	<1 <1	<1			
	Nitrogen, Ammonia	-	1.2				<1				1.6	<1	NT			
	Nitrogen, Ammonia	_	1.2	NT NT		4 40	<1 NT	<1 NT	<1 NT	<1 NT	1.6 NT	NT	NT	1.08		-4
	Nitrogen, Ammonia	_	1.2	<1	<1 <1	1,13 1,1	N I <1	N1 <1	<1	(1	1.35	<1	DRY	1.06 <1	<1 <1	<1 <1
	Nitrogen, Ammonia	_	1.2 1.2	NT	<1	1.08	NT	NT	NT	NT	NT	NT	NT	<1	<1	<1
	Nitrogen, Ammonia Nitrogen, Ammonia	_	1.2	N1 <1	<1	1.1	(N) <1	N I	(N) <1	<1	1.8	<1	<1	<1	<1	<1
	Nitrogen, Ammonia	_	1.2	<1	ξ1	1.3	\ \ \	<1	<1	<1	1.6	<1	<1	<1	<u> </u>	<1 <1
	Nitrogen, Ammonia	_	1.2	<1	सं	1.1	<1	<1	<1	<1	2.2	<1	<1	<1	<u><1</u>	<1
	Nitrogen, Ammonia	=	1.2	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	ζ'	<1
	Nitrogen, Ammonia	_	1.2	<1	<1	~ 1	<1	<1	1.1	<1	1.4	<1	<1	<1		<1
	Nitrogen, Ammonia	_	1.2	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	1.6	1.2	<1.0	<1.0	<1.0	<1
	Nitrogen, Ammonia	_	1.2	<1.0	<1.0	1.3	<1.0	<1.0	<1.0	<1.0	2	<1.0	<1.0	<1.0	<1.0	<1
	Nitrogen, Ammonia	_	1.2	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	2.2	1	<1.0	<1.0	<1.0	<1.0
	Nitrogen, Ammonia	_	1.2	<1.0	<1.0	1.5	<1.0	<1.0	<1.0	<1.0	1.5	<1.0	<1,0	<1.0	<1.0	<1.0
	Nitrogen, Ammonia	_	1.2	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	2.2	1	<1.0	<1.0	<1.0	<1.0
03/17/2006	Nitrogen, Ammonia	_	1.2	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	1.8	<1.0	<1.0	<1.0	<1.0	<1.0
	Nitrogen, Ammonia	_	1.2	<1.0	<1.0	1.2	<1.0	<1.0	<1.0	<1.0	1.8	<1.0	<1.0	<1.0	<10	<1.0
30.22.4000																

ERR

ERR

ERR

01114/2004

ZB/11/90

55/15/10

МОИІТОВІИС WELL SAMPLING RESULTS AMES-STORY ENVIRONMENTAL LANDFILL

	OTP S + mass 8c-W 6c-W 7c-W 5c-W 8c-W 8c-W 8c-W 8c-W	M -4			***************************************				ello)	hder Adulter M					-	Concentration, mg/L
666664.7 118887.0 686010.6	78888.7 852812.0 811618.8	84.7 408188.0 705688.8	727224.7 819972.0 888288.8	866086.7 18624.0 78802.8	805.7 \$78282.0 847914.8	8280625 8480845 818181,8	788084.7 660676.0 667815.8	818408.7 685886.8 685886.8	666812.7 472624.0 184775.8	799949.7 969618.0 969679.8	88.7 71004.0 45088.8	909099.7 SE3986.0 479934.8 448119.3			nesi (GTS) notisivaU brabhas GTS S + nasi GTS S - nasi	N S
6.7 6.7 1.8 7.7 6.7 8.7 7.7 7.1 8.8	2.8 2.8 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7	6.7 6.7 6.7 8.0 8.7 8.7 8.7 8.7 8.7 8.7 8.7 8.7 8.7 8.7	8 8 1.8 8 1.8 8 1.8 8 8 8 8 8 8 8 8 8 8	10.7 50.7 50.7 50.7 50.7 50.7 50.7 50.7 60.7	2.7.7.7.8.2.7.7.7.8.2.7.7.7.8.2.7.7.7.8.2.7.7.7.8.2.7.7.7.8.2.7.7.7.8.2.7.7.7.8.2.7.7.7.8.2.7.7.8.2.7.7.8.2.7.7.8.2.7.7.8.2.7.7.8.2.7.7.8.2.7.7.8.2.7.7.8.2.7.7.8.2.7.7.8.2.7.7.7.8.2.7.7.8.2.7.7.7.8.2.7.7.7.8.2.7.7.7.8.2.7.7.7.8.2.7.7.7.7	62.7 62.7 62.7 62.7 62.7 62.7 62.7 63.7 63.7 63.7 63.7 63.7 64.7 65.7 65.7 65.7 65.7 65.7 65.7 65.7 65	81.7 82.7 82.7 82.7 83.7 84.7 87.8 87.7 10.7 10.7 10.7 10.7 10.7 10.7 10.7 1	66.7 7 7.66.00.7 7 6.7.7 7.7.6.7 7.6.7 7.7.7 7.6.7 7.7.7 7.7.7 7.7.7 7.7.7 7.7.7 7.7.7 7.7.7 7.7.7 8.7.7 7.7.7 8.7.7 7.7.8 8.7.7 7.7.8 8.7.7 7.7.8 8.7.7 7.7.8 8.7.7 8.7 8	86.0 86.0	#8 #8 8 8 92 11 11 11 11 11 11 11 11 11 11 11 11 11	E.T E.T E.T E.A E.T E.A E.T E.S E.S E.S E.S E.S E.S E.S E.S E.T E.T E.T E.T E.T E.T E.T E.T E.T E.T	8 8 8 7 7 7 7 7 8 8 8 7 8 8 8 8 7 8 8 7 8 8 8 8 7 8 8 7 8 8 8 8 7 8	# 1,669 # 8 # 1,6			d 9002/22/60 d 9002/62/60 d 2002/61/60 d 2002/61/60 d 1002/82/60 d 1002/82/60 d 1002/82/60 d 1002/82/60 d 1002/82/60 d 9002/12/70 d 96/61/60 d 96/61/60 d 96/61/60 d 96/62/60 d 96/62/
W.A.G	W.A.G	W.A.G 8E WM	BOTH MW35	HTO8 AE WM	BOTH MW 33	BOTH RW 25	W.A.d	W.A.G	OUIFER WE D.A.W MW 29	W.A.Q	W.A.Q V.WM	W.A.U . aewm	+ MAEM TESS WA	ACTION LEVEL	я зт эм а яач	3TAQ

884+5/70 ede.Cl

6002/90/10

21-WM ⊕-15-WM -#-9E-MW "---

			MEAN+				AQUIFER W	ELLS								
	i	ACTION	2 STD	U.A.W	D.A.W	D.A.W	D.A.W	D.A.W	D.A.W	вотн	BOTH	вотн	BOTH	D.A.W	D.A.W	D.A.W
DATE	PARAMET		AW	MW36	MW 7	MW 8	MW 29	MW 30	MW 32	MW 25	MW 33	MVV 34	MW35	MW 38	MW 41	MW 42
	mg/l															
04/23/91		_	0.1				<0.1	<0.1	<0.1	<0.1	-	<0.1				
10/15/91	Phenois	-	0.1				<0.1	0.1	<0.1	<0.1	_	<0.1				
01/23/92	Phenois	-	0.1				_	<0.1	<0.1	<0.1	<0.1	<0.1				
03/23/92	Phenois	_	0.1				<0.1	<0.1	<0.1	<0.1	<0.1	<0.1				
09/30/92	Phenois	_	0.1				<0.1	<0.1	<0.1	<0.1	<0.1	<0.1				
03/05/93	Phenois	-	0.1				NT	NT	NT	NT	NT	NT				
09/21/93	Phenois	-	0.1				<0.1	<0.1	<0.1	<0.1	<0.1	<0.1				
03/23/94	Phenois	-	0.1				NT	NT	Νľ	NT	NT	NT				
09/16/94	Phenois	_	0.1				<0.1	<0.1	<0.1	<0.1	<0.1	<0.1				
03/16/95		-	0.1				<0.1	<0.1	<0.1	<0.1	<0.1	<0.1				
09/13/95	Phenois	-	0.1				NT	NT	NT	NT	NT	NT				
03/28/96		-	0.1	NT			<0.1	NT	NT	NT	NT	NT	NT			
06/20/96		-	0.1	NT			NT	NT	NT	NT	NT	NT	NT			
09/13/96		-	0.1	<0.1			<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1			
03/19/97		-	0.1	NT			NT	NT	NT	NT	NT	NT	NT			
06/18/97		-	0.1	ΝT			NT	NT	NT	NT	NT	NT	NT			
08/30/97		-	0.1	<0.1			<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1			
03/10/98		-	0.1	NT			NT	NT	NT	NT	NT	NT -0.4	NT			
09/21/98		-	0.1	<0.1			<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1			
03/18/99		-	0.1	NT			NT	NT	NT	NT	NT	NT	NT			
09/21/99		-	0.1	<0.1			<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1			
03/21/2000		-	0.1	NT			NT	NT	NT	NT	NT	NT	NT			
06/28/2000		-	0.1	NT	NT	NT	NT	NT	NT	NT	NT	NT -0.4	NT	NT	NT	NT
09/28/2000		-	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	DRY	<0.1	<0.1	<0.1
12/27/2000		-	0.1	NT	NT	NT	NT	NT	NT	NT	NT	NT NT	NT	NT	NT	NT
03/28/2001		-	0.1	NT	NT	NT	NT	NT	NT	NT O	NT <0.1	(0.1	NT <0.1	NT <0.1	NT <0.1	NT
09/02/2001		-	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1		NT	NT	NT		<0.1 NT
03/19/2002		-	0.1	NT	NT	NT	NT	NT	NT	NT <0.1	NT <0.1		N I <0.1		NT <0.1	
09/19/2002		-	0.1	<0.1 NT	<0.1	<0.1	<0.1 NT	<0.1 NT	<0.1 NT	<0.1 NT	NT	<0.1 NT	NT	<0.1 NT	<0.1 NT	<0.1
03/14/2003		-	0.1		NT co. 400	NT <0.100	<0.100	<0.100	<0.100	<0.100	<0.100	<0.100	<0.100	<0.100	<0.100	NT NT
09/29/2003		-	0.1 0.1	<0.100 NT	<0.100 NT	<0.100 NT	NT	<0.100 NT	NT	VU. 100	NT	NT NT	NT NT	NT	NT	NT
03/08/2004		-	0.1	<0.100	<0.100	<0.100	<0.100	<0.100	<0.100	<0.100	<0.100	<0.100	<0.100	<0.100	<0.100	<0.100
09/27/2004		_	0.1	NT NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
03/17/2005		_	0.1	<0.100	<0.100	<0.100	<0.100	<0.100	<0.100	<0.100	<0.100	<0.100	<0.100	<0.100	<0.100	<0,100
03/17/2006			0.1	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
09/22/2006		_	0.1	<0.100	<0.100	<0.100	<0.100	<0.100	<0.100	<0.100	<0.100	<0.100	<0.100	<0.100	<0.100	<0.100
03/22/2006	Luciora	_	U . 1	-0.100	-0.100	-0.100	-0.100	-0.100	-0.100	-0, 100					-5.700	- -
	Mean			ERR	ERR	ERR	ERR	0.1	ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR
	Standard Deviation (ST	D)		ERR	ERR	ERR	ERR	0	ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR
	Mean + 2 STD			ERR	ERR	ERR	ERR	0.1	ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR

964-2170 eds:0 08/19/10 /9/11/90 6002/90/20 1/14/2004 MW-42 Ŧ L1≻AAW BE-WW --0-SE-WM MW-34 -4-Concentration. OF MVV-33 WW-25 --8-WM رة ق ZS-AAW **⊸** MVV-3D 7-WM 6Z-AAW WW-38 Mean + 2 STD Upper Aquiter Wells Temperature QTS S + nseM 22,7622 20,98527 18,53557 20,57738 19,21536 79775.02 86304.02 88868.81 9755.71 19,48054 20,84925 23,40032 21,59228 173722.2 308023.4 929054.4 10774E.E 368901.E (GTS) notisived brabnat2 3,30101 4,245745 4,234846 189709.2 5,395651 4.378998 2,287787 3,431546 72722.51 46076.11 82868.11 78516.11 48460.21 3282.51 73062.51 28828.141 78026.51 09/22/2006 Temperature, celsius εz 19.48054 20 18 03/17/2006 Temperature, celsius 12 6 71 01 15 14 13 10 Þ١ 19.48054 ø 11 09/22/2005 Temperature, celsius 11 35 13 15 15 23 50 19,48054 81 41 20 11 03/17/2005 Temperature, celsius 11 15 13 19.48054 В 09/27/2004 Temperature, celsius 41 21 15 15 14 15 19.48054 ۷٤ 91 91 81 S١ S١ 03/08/2004 Temperature, celsius 15 19.48054 10 10 15 15 6 LL 09/29/2003 Temperature, celaius 91 Þ١ Þ١ 19.48054 13 Þ١ Z١ 91 11 03/14/2003 Temperature, celsius 11 12 14 13 G 11 19.48054 13 Þ١ 10 10 10 13 09/19/2002 Temperature, celsius 42 81 ≱1 11 49.48054 91 91 61 ΤN TN 11 13 11 15 15 03/19/2002 Temperature, celsius 19,48054 10 11 10 Þŀ 10 6 10 09/02/2001 Temperature, celsius 13 13 TN 11 Er TN Þ١ S١ 9 7 2 Z 7 Z Z 7 6 13 ÞL ΤN 19.48054 03/28/2001 Temperature, celsius 6 15 8 10 19,48054 95555r 6 12/27/2000 Temperature, celsius ΤN ΤN ΤN ΙN Þ١ at TV 19.48054 さってまなった 09/28/2000 Temperature, celsius 42 91 ۹٤ 1N 81 ÞΙ ٤١ 18 19.48054 06/28/2000 Temperature, celsius ΤN ΤN ΤN LΝ ΤN 19,48054 LΝ 1N 03/21/2000 Temperature, celsius 81 TN IN ΙN ΤN ΤN 19.48054 09/21/99 Temperature, celsius u 40 bL 11 19.48054 03/18/99 Temperature, celsius 11 9 10 19.48054 11 8 09/21/98 Temperature, celsius 10 11 19.48054 11 4١ 81 03/10/98 Temperature, celsius 10 10 10 10 ۲۲ 8 19.48054 08/30/97 Temperature, celsius SI ÞΙ 19.48054 54 51 50 6١ 13 06/18/97 Temperature, celsius PS084.81 ΤN TN ΤN ΙN ΤN Þ١ 03/19/97 Temperature, celsius g 15 15 13 8 19,48054 Z 09/13/96 Temperature, celsius 91 91 Þl 91 21 19,48054 06/20/96 Temperature, celsius ΔN ΤN ΤN TΝ ΤN ΤN Þ٤ 19.48054 03/28/96 Temperature, celsius 11 10 19.48054 2 L 1 09/13/95 Temperature, celsius 19.48054 99.p 4.24 €9.4 88.6 80.4 4.62 03/16/95 Temperature, celsius 19.48054 10 9 8 9 09/16/94 Temperature, celsius 19.48054 6.er 3.21 1.71 11.2 **6.81** 03/23/84 1 emperature, cersius 12.1 19.48054 1.11 4.6 7.01 5.8 09/21/93 Temperature, celsius 19,48054 7.41 9.41 4.01 13.1 9.41 03/05/93 Temperature, celsius 48084.ef 8.6 1.8 6'9 6.9 2.6 09/30/92 Temperature, celsius 1.21 19,48054 1.01 7.01 7.01 11 11.3 03/23/92 Temperature, celsius 5.8 2.7 P2084.91 S.8 8.8 8.11 13.2 8.01 E.T 01/23/92 Temperature, celsius PC084,01 €.8 **6.8** 10/15/91 Temperature, celsius 9.41 0.11 5.11 6.11 \$508\$ 61 2.91 04/23/91 Temperature, celsius PG084.81 12.4 15.1 11.3 11.6 12.7 PARAMETER **3TAO** TEVEL WW 25 **WM 35** WM 30 **WW 29** 8 WM Z MW 9EMW WA WW35 WM 34 **WW 33** MW 42 MW 41 8E WW QTS S **NOITOA** W.A.d W.A.G W.A.Q W.A.U W.A.Q HTOB HT08 **BOTH**

AQUIFER WELLS

MONITORING WELL SAMPLING RESULTS

Γ	T	т	MEAN +				AQUIFER W	ELLS								
i		ACTION	2 STD	U.A.W	D.A.W	D.A.W	D.A.W	D.A.W	D.A.W	BOTH	BOTH	BOTH	BOTH	D.A.W	D.A.W	D.A.W
DATE	PARAMETER	LEVEL	AW	MW36	MW 7	MW 8	MW 29	MW 30	MW 32	MW 25	MW 33	MW 34	MW35	MW 38	MW 41	MW 42
DATE	mg/L				10,11,7											
04/23/01	Total Organic Halogens	_	0.030806				0.16	0.05	0.01	0.033	_	0.05				
	Total Organic Halogens	_	0.030806				<0.01	<0.01	<0.01	<0.01	_	<0.01				
	Total Organic Halogens	_	0.030806					<0.01	<0.01	<0.01	<0.01	<0.01				
	Total Organic Halogens	_	0.030806				< 0.01	<0.01	<0.01	0.92	0.99	0.01				
	Total Organic Halogens	_	0.030806				<0.01	<0.01	<0.01	0.02	<0.01	0.01				
	Total Organic Halogens	_	0.030806				NT.	NT	NT	NT	NT	NT				
	Total Organic Halogens	_	0.030806				0.01	0.01	0.01	0.02	0.05	0.02				
	Total Organic Halogens	_	0.030806				NT	NT	NT	NT	NT	NT				
	Total Organic Halogens	_	0.030806				<0.01	<0.01	0.014	0.024	0.024	<0.01				
	Total Organic Halogens	_	0.030806				<0.01	<0.01	<0.01	0.024	0.04	0.02				
	Total Organic Halogens	_	0.030806				NT	NT	NT	NT	NT	NT				
	Total Organic Halogens	_	0.030806	NT			<0.01	NT	NT	NT	NT	NT	NT			
	Total Organic Halogens	_	0.030806	NT			NT	NT	NT	NT	NT	NT	NT			
	Total Organic Halogens	_	0.030806	0.01			0.01	<0.01	0.01	0.02	0.01	0.01	0.03			
	Total Organic Halogens	_	0.030806	NT			NT	NT	NT	NT	NT.	NT	NT			
	Total Organic Halogens	_	0.030806	NT			NT	NT	NT	NT	NT	NT	NT			
	Total Organic Halogens	_	0.030806	<0.01			<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01			
	Total Organic Halogens	_	0.030806	NT			NT	NT	NT	NT	NT	NT	NT			
	Total Organic Halogens	Ξ	0.030806	<0.01			<0.01	<0.01	<0.01	0.02	0.02	<0.01	0.03			
	Total Organic Halogens	_	0.030806	NT			NT	NT	NT	NT U.UZ	NT 0.02	NT	NT 0.03			
	Total Organic Halogens	_	0.030806	<0.01			<0.01	<0.01	<0.01	0.02	0.02	0.01	0.02			
	Total Organic Halogens	_	0.030806	NT			NT	NT.	NT	NT U.U.Z	NT	NT.	NT D.UZ			
	Total Organic Halogens	_	0.030806	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
	Total Organic Halogens	_	0.030806	<0.01	0.02	0.02	0.02	<0.01	0.01	0.02	0.02	0.02	DRY	<0.01	<0.01	0.02
	Total Organic Halogens	_	0.030806	NT.	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
	Total Organic Halogens	_	0.030806	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
	Total Organic Halogens	_	0.030806	<0.01	<0.01	<0.01	<0.01	0.013	0.02	0.065	0.021	0.03	0.028	<0.01	<0.01	0.011
	Total Organic Halogens	_	0.030806	NT	NT	NT	NT	NT	NT	NT	NT.	NT	NT	NT	NT	NT
	Total Organic Halogens	_	0.030806	<0.01	<0.01	0.124	<0.01	0.015	0.077	0.019	0.02	0.021	0.034	<0.01	<0.01	0.014
	Total Organic Halogens	_	0.030806	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
	Total Organic Halogens	_	0.030806	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	0.012	<0.010	<0.010	<0.010	NT
	Total Organic Halogens	_	0.030806	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
	Total Organic Halogens	_	0.030806	<0.010	0.013	<0.010	0.014	<0.010	0.01	0.034	0.034	0.012	0.029	0.015	<0.010	0.012
	Total Organic Halogens	_	0.030806	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
	Total Organic Halogens	_	0.030806	0.025	<0.010	<0.010	<0.010	0.03	0.032	0.035	0.115	0.053	0.029	<0.010	0.03	0.022
	Total Organic Halogens	_	0.030806	NT	NT	NT	NT	NT	NT	NT	0.019	NT	NT	NT	NT	NT
	Total Organic Halogens	_	0.030806	0.02	0.03	0.036	0.035	0.039	0.035	0.036	0.032	0.056	0.016	0.018	0.05	0.056
03/22/2000	Total Organic ranogeris	_	0.00000	0.02	0.00	0.000	0.000	0.000	0.000	0.000	0.002	0.000	0.010	5.010	0.03	0.030
	Mean Standard Deviation (STD)			0.018333 0.006236	0.021 0.006976	0.06 0.045724	0.0415 0.053677	0.0294 0.014094	0.0228 0.020188	0.087067 0.222923	0.025833 0.010605	0.023857 0.016269	0.027 0.005545	0.0165 0,0015	0.04 0.01	0.0225 0.015511
	Mean + 2 STD			0.030806	0.034952	0.151448	0.148855	0.057588	0.063176	0.532912	0.047044	0.056396	0.038091	0.0195	0.06	0.053521

			MEAN+				AQUIFER W	/FLLS								
	1	ACTION	2 STD	U.A.W	D.A.W	D.A.W	D.A.W	D.A.W	D.A.W	вотн	вотн	BOTH	BOTH	D.A.W	D.A.W	D.A.W
DATE	PARAMETER	LEVEL	AW	MW36	MW 7	MW 8	MW 29	MW 30	MW 32	MW 25	MW 33	MW 34	MW35	MW 38	MW 41	MW 42
DATE	ug/L		7,44													
04/23/91	Trichloroethene *	5	1				<1	<1	<1	<1	_	<1				
10/15/91	Trichlorgethene *	5	1				<1	<1	<1	<1	_	<1				
01/23/92	Trichloroethene *	5	1				_	<1	<1	<1	<1	<1				
03/23/92	Trichloroethene *	5	1				<1	<1	<1	<1	<1	<1				
09/30/92	Trichtoroethene *	5	1				NT	NT	NT	NT	NT	NT				
03/05/93	Trichtoroethene *	5	1				NT	NT	NT	NT	NT	NT				
09/21/93	Trichloroethene *	5	1				NT	NT	NT	NT	NT	NT				
03/23/94	Trichloroethene *	5	1				NT	NT	NT	NT	NT	NT				
09/16/94	Trichloroethene *	5	1				NT	NT	NT	NT	NT	NT				
03/16/95	Trichtoroethene *	5	1				NT	NT	NT	NT	NT	NT				
09/13/95	Trichtoroethene *	5	1				NT	NT	NT	NT	NT.	NT				
03/28/96	Trichtoroethene *	5	1	<1			NT	NT	NT	NT	NT	NT	<1			
06/20/96	Trichloroethene *	5	1	<1			NT	NT	NT	NT	NT	NT	<1			
09/13/96	Trichloroethene *	5	1	<1			NT	NT	NT	NT	NT	NT	<1			
03/19/97	Trichloroethene *	5	1	NT			NT	NT	NT	NT	NT	NT	NT			
06/18/97	Trichloroethene *	5	1	<1			<1	NT	NT	NT	NT	NT	<1			
08/30/97	Trichloroethene *	5	1	NT			NT	NT	NT	NT	NT	NT	NT			
03/10/98	Trichloroethene *	5	1	NT			NT	NT	NT	NT	NT	NT	NT			
09/21/98	Trichloroethene *	5	1	NT			NT	NT	NT	NT	NT	NT	NT			
03/18/99	Trichloroethene *	5	1	NT			NT	NT	NT	NT	NT	NT	NT			
09/21/99	Trichloroethene *	5	1	NT			NT	NT	NT	NT	NT	NT	NT			
03/21/2000	Trichloroethene *	5	1	NT			NT	NT	NT	NT	NT	NT	NT			
06/28/2000	Trichloroethene *	5	1	NT	<1	<1	NT	NT	NT	NT	NT	NT	NT	<1	<1	<1
09/28/2000	Trichloroethene *	5	1	NT	<1	<1	<1	NT	NT	NT	NT	NT	DRY	<1	<1	<1
12/27/2000	Trichloroethene *	5	1	NT	<1	<1	NT	NT	NT	NT	NT	NT	NT	<1	<1	<1
03/28/2001	Trichtoroethene *	5	1	NT	<1	<1	<1	NT	NT	NT	NT	NT	NT	<1	<1	<1
09/02/2001	Trichloroethene *	5	1	NT	NT	NT	<1	NT	NT	NT	NT	NT	NT	NT	NT	NT
03/19/2002	Trichloroethene *	5	1	NT	NT	NT	<1	NT	NT	NT	NT	NT	NT	NT	NT	NT
09/19/2002	Trichloroethene *	5	1	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
03/14/2003	Trichloroethene *	5	1	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
09/29/2003	Trichloroethene *	5	1	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
03/08/2004	Trichloroethene *	5	1	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
09/27/2004	Trichloroethene *	5	1	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
03/17/2005	Trichloroethene *	5	1	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
09/22/2005	Trichloroethene *	5	1	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
03/17/2006	Trichloroethene *	5	1	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
09/22/2006	Trichtoroethene *	5	1	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
	Mean			ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERI
	Standard Deviation (STD)			ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERF
	Mean + 2 STD			ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERF

Γ	ZÞ-MW	- 1	6002/90/10		· · · · · · · · · · · · · · · · · · ·	+00Z/>\/			әрі 9 1- д. д. д.	6/77/10	* 334 /	<u> </u>	£8/1£/10	<u>-</u> 14.11 A. · · A. · · · · · · · · · · · · · · ·	Z8/11/80	
	BE-MM BE-MM BE-MM BE-MM BE-MM BE-MM BE-MM BE-MM BE-MM B-MM B	- A			-	96 111.33				AL BASSA			8 10.00	-	— so	Concentration, mg/L
	0T2 S + ns9M 85-WM 85-WM 5-WM	- ▼ -								esiG ,cnii Upper Aquife	z			-	z	
0.0	788840.0 486250.0 878460.0	260.0 0 260.0	3440.0 3200.0 3640.0	ЕВВ ЕВВ ЕВВ	883 ERR ERR	883 E88 E88	E98 E98	883 E88 E88	8277.0 8778.0 87S1.2	2610.0 2800.0 2000.0	0.0405 0.0026 0.0456	20.0 0 20.0			nsañ Sandard Devision (STD) GTS S + nsañ	S
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	80.00 880.00 880.00 880.00 880.00 880.00	60.09 60.09 60.09 60.09 60.09 60.09	3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	333333333333333333333333333333333333333	34444444444444444444444444444444444444	3388888888525252525252525252525252555688888888	55555555555555555555555555555555555555	38888888888888888888888888888888888888	크로크로크로크로구독 그 등 그 등 그 로 크로 크로 크로 크로 크로 크로 크로 그 등 수 수	80.05 80.05 20.05 20.05 20.05 20.05 20.05 20.05	8000 8000 8000 8000 8000 8000	23522353555555555555555555555555555555	\$0.0 \$0.0 \$0.0 \$0.0 \$0.0 \$0.0 \$0.0 \$0.0		simo, dissolved	Z 900Z/L Z 900Z/L Z 900Z/Z Z 9
M.A.CI	D.A.W	W.A.Q 85 WM	WW35	MW 34	BOTH MW 33	BOTH MW 25	D.A.W MW 32	D.A.W	W.A.G	W.A.G 8 WM	W.A.Q 7 WM	W.A.U 35WM	OTS S WA	LEVEL	ABTAMARA9 J\gm	31.

APPENDIX D.3

Concentration Versus Time Tables & Graphs
Surface Water System

	1	T 1	MEAN+	SURFACE M	ONITORING	PTS			
		ACTION	2 STD	30111710L II	1011110111110	,,,,,,			
DATE	PARAMETER	LEVEL	sw	SW 1	SW 2	SW 3	SW 4	SW 5	SW 6
	ug/L	1							
04/23/91	1,1-Dichloroethene *	7	1	<1	<1	<1			
10/15/91	1,1-Dichloroethene *	7	1	<1	<1	<1			
01/23/92	1,1-Dichloroethene *	7	1	<1	<1	<1			
03/23/92	1,1-Dichloroethene *	7	1	<1	<1	<1			
09/30/92	1,1-Dichloroethene *	7	1	NT	NT	NT			
03/05/93	1,1-Dichloroethene *	7	1	NT	NT	NT			
09/21/93	1,1-Dichloroethene *	7	1	NT	NT	NT			
03/23/94	1,1-Dichloroethene *	7	1	NT	NT	NT			
09/16/94	1,1-Dichloroethene *	7	1	NT	NT	NT			
03/16/95	1,1-Dichloroethene *	7	1	NT	NT	NT			
09/13/95	1.1-Dichloroethene *	7	1	NT	NT	NT			
03/28/96	1.1-Dichloroethene *	7	1	NT	NT	NT			
06/20/96	1.1-Dichloroethene *	7	1	NT	NT	NT			
	1,1-Dichloroethene *	7	1	NT	NT	DRY			
	1,1-Dichloroethene *	7	1	NT	NT	DRY			
	1,1-Dichloroethene *	7	1	NT	NT	NT			
	1.1-Dichloroethene *	7	i	NT	NT	DRY			
	1.1-Dichloroethene *	7	1	NT	NT	DRY			
	1,1-Dichloroethene *	7	i	NT	NT	DRY			
	1,1-Dichloroethene *	7	1	NT	NT	DRY			
	1,1-Dichloroethene *	7	i	NT	NT	DRY			
	1.1-Dichloroethene *	7	i	NT	NT	DRY			
	1,1-Dichloroethene *	7	i	NT	NT	DRY	<1	DRY	. <1
	1.1-Dichloroethene *	7	i	NT	NT	DRY	DRY	DRY	<1
	1,1-Dichloroethene *	7	i	NT	NT	NT	DRY	DRY	<1
	1,1-Dichloroethene *	7	i	NT	NT	DRY	<1	DRY	DRY
	1,1-Dichloroethene *	7	i	NT	NT	DRY	NT	DRY	DRY
	1,1-Dichloroethene *	7	i	NT	NT	DRY	<1	DRY	<1
	1,1-Dichloroethene *	7	i	NT	NT	DRY	<1	<1	NT
	1,1-Dichloroethene *	7	1	NT	NT	DRY	NT	<1	NT
	1,1-Dichloroethene *	7	1	NT	NT	DRY	DRY	DRY	NT
	1,1-Dichloroethene *	7	•	NT	NT	DRY	NT	<1	NT
	1,1-Dichloroethene *	7	1	NT	NT	DRY	DRY	DRY	NT
	1,1-Dichloroethene *	7	'	NT	NT	DRY	NT	<1	NT
	1,1-Dichloroethene *	7	1	NT NT	NT	DRY	DRY	DRY	NT NT
	1,1-Dichloroethene *	7	1	NT	NT	DRY	NT	DRY	NT NT
	1,1-Dichloroethene *	7	1	NT	NT	DRY	DRY	DRY	NT NT
09/22/2006	1,1-Dichloroethene	,	1	NI .	NI	DKT	DKT	DRY	NI
	Mean			ERR	ERR	ERR	ERR	ERR	ERR
	Standard Deviation (STD)			ERR	ERR	ERR	ERR	ERR	ERR
	Mean + 2 STD			ERR	ERR	ERR	ERR	ERR	ERR

		T		SURFACE M	ONITORING	PTS.			·
DATE	PARAMETER	ACTION LEVEL	2 STD SW	SW 1	SW 2	SW 3	SW4	SW 5	SW 6
	ug/L								
04/23/01	1,1,1-Trichloroethane *	200	1	<1	<1	<1			
	1,1,1-Trichloroethane *	200	1	<1	<1	<1			
	1,1,1-Trichloroethane *	200	1	<1	<1	·<1			
	1.1.1-Trichloroethane *	200	1	<1	<1	<1			
	1,1,1-Trichloroethane *	200	i	NT	NT	NT			
	1,1,1-Trichloroethane *	200	i	NT	NT	NT			
	1,1,1-Trichloroethane *	200	i	NT	NT	NT			
03/23/94		200	1	NT	NT	NT			
	1.1.1-Trichloroethane *	200	i	NT	NT	NT			
	1,1,1-Trichloroethane *	200	i	NT	NT	NT			
	1.1.1-Trichloroethane *	200	1	NT	NT	NT			
	1,1,1-Trichloroethane *	200	1	NT	NT	NT			
06/20/96		200	1	NT	NT	NT			
	1,1,1-Trichloroethane *	200	1	NT	NT	Dry			
	1,1,1-Trichloroethane *	200	1	NT	NT	DRÝ			
06/18/97	1,1,1-Trichloroethane *	200	1	NT	NT	NT			
08/30/97	1,1,1-Trichloroethane *	200	1	NT	NT	DRY			
03/10/98	1,1,1-Trichloroethane *	200	1	NT	NT	DRY			
09/21/98	1,1,1-Trichloroethane *	200	1	NT	NT	DRY			
03/18/99	1,1,1-Trichloroethane *	200	1	NT	NT	DRY			
	1,1,1-Trichloroethane *	200	1	NT	NT	DRY			
03/21/2000	1,1,1-Trichloroethane *	200	1	NT	NT	DRY			
06/28/2000		200	1	NT	NT	DRY	<1	DRY	<1
09/28/2000		200	1	NT	NT	DRY	DRY	DRY	<1
	1,1,1-Trichloroethane *	200	1	NT	NT	DRY	DRY	DRY	<1
	1,1,1-Trichloroethane *	200	1	NT	NT	DRY	<1	DRY	DRY
	1,1,1-Trichloroethane *	200	1	NT	NT	DRY	NT	DRY	DRY
	1,1,1-Trichloroethane *	200	1	NT	NT	DRY	<1	DRY	<1
	1,1,1-Trichloroethane *	200	1	NT	NT	DRY	<1	<1	NT
	1,1,1-Trichloroethane *	200	1	NT	NT	DRY	NT	<1	NT
	1,1,1-Trichloroethane *	200	1	NT	NT	DRY	DRY	DRY	NT
	1,1,1-Trichloroethane *	200	1	NT	NT	DRY	NT	<1	NT
	1,1,1-Trichloroethane *	200	1	NT	NT	DRY	DRY	DRY	NT
	1,1,1-Trichloroethane *	200	1	NT	NT	DRY	NT	<1	NT
	1,1,1-Trichloroethane *	200	1	NT	NT	DRY	DRY	DRY	NT
	1,1,1-Trichloroethane *	200	1	NT	NT	DRY	NT	DRY	NT
09/22/2006	1,1,1-Trichloroethane *	200	1	NT	NT	DRY	DRY	DRY	NT
	Mean			ERR	ERR	ERR	ERR	ERR	ERR
	Standard Deviation (STD)			ERR	ERR	ERR	ERR	ERR	ERR
	Mean + 2 STD			ERR	ERR	ERR	ERR	ERR	ERR

10/15/91 1, 01/23/92 1, 03/23/92 1, 09/30/92 1, 03/05/93 1, 09/21/93 1, 09/16/94 1, 03/16/95 1, 09/13/95 1, 06/20/96 1, 09/13/96 1, 09/13/96 1, 09/13/96 1, 09/13/96 1, 08/30/97 1,	PARAMETER ug/L ,2-Dichloroethane *	ACTION LEVEL 5 5 5 5 5 5 5 5 5 5 5 5 5 5	2 STD SW 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	SW 1 <1 <1 <1 <1 NT	SW 2 <1 <1 <1 <1 <1 NT	SW 3 <1 <1 <1 <1 NT	SW 4	SW 5	SW 6
04/23/91 1, 10/15/91 1, 01/23/92 1, 03/23/92 1, 03/05/93 1, 03/05/93 1, 03/21/93 1, 03/23/94 1, 09/16/94 1, 03/16/95 1, 03/28/96 1, 06/20/96 1, 09/13/96 1, 03/19/97 1, 08/30/97 1,	ug/L ,2-Dichloroethane *	LEVEL 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	SW 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	<1 <1 <1 <1 <1 NT	<1 <1 <1 <1 NT	<1 <1 <1 <1 <1 NT	SW 4	SW 5	SW 6
10/15/91 1, 01/23/92 1, 03/23/92 1, 09/30/92 1, 03/05/93 1, 09/21/93 1, 09/16/94 1, 03/16/95 1, 09/13/95 1, 06/20/96 1, 09/13/96 1, 09/13/96 1, 06/20/97 1, 08/30/97 1,	2-Dichloroethane *	5 5 5 5 5 5 5 5 5 5 5 5	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	<1 <1 <1 NT NT NT NT NT NT NT	<1 <1 <1 NT NT NT NT NT NT	<1 <1 <1 NT NT NT NT NT NT			
10/15/91 1, 01/23/92 1, 03/23/92 1, 09/30/92 1, 03/05/93 1, 09/21/93 1, 09/16/94 1, 03/16/95 1, 09/13/95 1, 06/20/96 1, 09/13/96 1, 06/20/96 1, 06/18/97 1, 08/30/97 1,	2-Dichloroethane *	5 5 5 5 5 5 5 5 5 5 5 5	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	<1 <1 <1 NT NT NT NT NT NT NT	<1 <1 <1 NT NT NT NT NT NT	<1 <1 <1 NT NT NT NT NT NT			
01/23/92 1, 03/23/92 1, 09/30/92 1, 09/21/93 1, 09/21/93 1, 09/16/94 1, 03/16/95 1, 09/13/95 1, 06/20/96 1, 09/13/96 1, 06/20/96 1, 09/13/96 1, 06/18/97 1, 08/30/97 1,	2-Dichloroethane *	5 5 5 5 5 5 5 5 5 5 5	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	<1 <1 NT NT NT NT NT NT	<1 <1 NT NT NT NT NT NT	<1 <1 NT NT NT NT NT NT			
03/23/92 1, 09/30/92 1, 03/05/93 1, 09/21/93 1, 03/23/94 1, 09/16/94 1, 09/13/95 1, 03/28/96 1, 06/20/96 1, 09/13/96 1, 03/19/97 1, 06/18/97 1, 08/30/97 1,	2-Dichloroethane *	5 5 5 5 5 5 5 5 5 5	1 1 1 1 1 1 1 1 1 1 1	<1 NT NT NT NT NT NT	<1 NT NT NT NT NT NT	<1 NT NT NT NT NT NT			
09/30/92 1, 03/05/93 1, 09/21/93 1, 03/23/94 1, 09/16/94 1, 03/16/95 1, 09/13/95 1, 03/28/96 1, 06/20/96 1, 09/13/96 1, 03/19/97 1, 08/30/97 1,	2-Dichloroethane *	5555555555	1 1 1 1 1 1 1	NT NT NT NT NT NT	NT NT NT NT NT NT	NT NT NT NT NT NT NT			
03/05/93 1, 09/21/93 1, 03/23/94 1, 09/16/94 1, 03/16/95 1, 03/28/96 1, 06/20/96 1, 09/13/96 1, 03/19/97 1, 08/30/97 1,	2-Dichloroethane *	5 5 5 5 5 5 5 5 5 5 5 5	1 1 1 1 1 1	NT NT NT NT NT	NT NT NT NT NT	NT NT NT NT NT NT			
09/21/93 1, 03/23/94 1, 09/16/94 1, 03/16/95 1, 09/13/95 1, 03/28/96 1, 06/20/96 1, 09/13/96 1, 06/18/97 1, 08/30/97 1,	2-Dichloroethane * ,2-Dichloroethane *	5 5 5 5 5 5 5 5	1 1 1 1 1 1	NT NT NT NT NT	NT NT NT NT NT	NT NT NT NT NT			
03/23/94 1, 09/16/94 1, 03/16/95 1, 09/13/95 1, 03/28/96 1, 06/20/96 1, 09/13/96 1, 03/19/97 1, 06/18/97 1, 08/30/97 1,	2-Dichloroethane *	5 5 5 5 5 5	1 1 1 1 1	NT NT NT NT	NT NT NT NT	NT NT NT NT			
09/16/94 1, 03/16/95 1, 09/13/95 1, 03/28/96 1, 06/20/96 1, 09/13/98 1, 03/19/97 1, 08/30/97 1,	2-Dichloroethane * ,2-Dichloroethane * ,2-Dichloroethane * ,2-Dichloroethane * ,2-Dichloroethane * ,2-Dichloroethane *	5 5 5 5 5	1 1 1 1	NT NT NT	NT NT NT	NT NT NT			
03/16/95 1, 09/13/95 1, 03/28/96 1, 06/20/96 1, 09/13/96 1, 03/19/97 1, 06/18/97 1, 08/30/97 1,	2-Dichloroethane * 2-Dichloroethane * 2-Dichloroethane * 2-Dichloroethane * 2-Dichloroethane *	5 5 5 5	1 1 1	NT NT	NT NT	NT NT			
09/13/95 1, 03/28/96 1, 06/20/96 1, 09/13/96 1, 03/19/97 1, 06/18/97 1, 08/30/97 1,	2-Dichloroethane * ,2-Dichloroethane * ,2-Dichloroethane * ,2-Dichloroethane *	5 5 5	1 1 1	NT	NT	NT			
03/28/96 1, 06/20/96 1, 09/13/96 1, 03/19/97 1, 06/18/97 1, 08/30/97 1,	2-Dichloroethane * ,2-Dichloroethane * ,2-Dichloroethane *	5 5	1						
06/20/96 1, 09/13/96 1, 03/19/97 1, 06/18/97 1, 08/30/97 1,	2-Dichloroethane * 2-Dichloroethane *	5	1	NT	NIT				
09/13/96 1, 03/19/97 1, 06/18/97 1, 08/30/97 1,	2-Dichloroethane *		-		IN I	NT			
03/19/97 1,3 06/18/97 1,3 08/30/97 1,3		5		NT	NT	NT			
03/19/97 1,3 06/18/97 1,3 08/30/97 1,3			1	NT	NT	DRY			
06/18/97 1,2 08/30/97 1,2		5	1	NT	NT	DRY			
08/30/97 1,3	2-Dichloroethane *	5	1	NT	NT	NT			
	2-Dichloroethane *	5	1	NT	NT	DRY			
	2-Dichloroethane *	5	1	NT	NT	DRY			
	2-Dichloroethane *	5	i i	NT	NT	DRY			
	2-Dichloroethane *	5	i i	NT	NT	DRY			
	2-Dichloroethane *	5	i	NT	NT	DRY			
	2-Dichloroethane *	5	i	NT	NT	DRY			
	2-Dichloroethane *	5	i	NT	NT ·	DRY	<0.4	DRY	<0.4
	,2-Dichloroethane *	5	1	NT	NT	DRY	DRY	DRY	<0.4
	2-Dichloroethane *	5	i	NT	NT	NT	DRY	DRY	<0.4
	2-Dichloroethane *	5	i	NT	NT	DRY	<0.4	DRY	DRY
	,2-Dichloroethane *	5	i	NT	NT	NT	NT	DRY	DRY
	,2-Dichloroethane *	5	i	NT	NT	DRY	<0.4	DRY	<0.4
	,2-Dichloroethane *	5	1	NT	NT	DRY	<0.4	<0.4	NT
	2-Dichloroethane *	5	1	NT	NT	DRY	NT	<0.4	NT
	2-Dichloroethane *	5	1	NT	NT	DRY	DRY	DRY	NT
	2-Dichloroethane *	5	i	NT	NT	DRY	NT	<0.4	NT
	,2-Dichloroethane *	5	1	NT	NT	DRY	DRY	DRY	NT
	,2-Dichloroethane *	5	· i	NT	NT	DRY	NT	<0.4	NT
	,2-Dichloroethane *	5 5	1	NT	NT	DRY	DRY	DRY	N I NT
	,2-Dichloroethane *	5 5	1	NT	NT	DRY	NT	DRY	NT
		5	1		NT				
09/22/2006 1,2	2-Dichloroethane *	ð	1	NT	N I	DRY	DRY	DRY	NT
Me	ean			ERR	ERR	ERR	ERR	ERR	ERR
	andard Deviation (STD)			ERR	ERR	ERR	ERR	ERR	ERR
	ean + 2 STD			ERR	ERR	ERR	ERR	ERR	ERR

			MEAN +	SURFACE M	ONITORING	PTS.							
DATE	PARAMETER	ACTION LEVEL	2 STD SW	SW 1	SW 2	SW 3	SW 4	SW 5	SW 6				
	ug/L			<u> </u>									
04/23/91 1.4	-Dichlorobenzene *	75	1	<1	<1	<1							
	-Dichlorobenzene *	75	1	<1	<1	<1							
	-Dichlorobenzene *	75	1	<1	<1	<1							
	-Dichlorobenzene *	75	1	<1	<1	<1							
	-Dichlorobenzene *	75	1	NT	NT	NT							
	-Dichlorobenzene *	75	1	NT	NT	NT							
09/21/93 1,4	-Dichlorobenzene *	75	1	NT	NT	NT							
03/23/94 1.4	-Dichlorobenzene *	75	1	NT	NT	NT							
	-Dichlorobenzene *	75	1	NT	NT	NT							
03/16/95 1,4-	-Dichlorobenzene *	75	1	NT	NT	NT							
	-Dichlorobenzene *	75	1	NT	NT	NT							
03/28/96 1.4	-Dichlorobenzene *	75	1	NT	NT	NT							
06/20/96 1.4	-Dichlorobenzene *	75	1	NT	NT	NT							
	-Dichlorobenzene *	75	1	NT	NT	DRY							
03/19/97 1,4	-Dichlorobenzene *	75	1	NT	NT	DRY							
	-Dichlorobenzene *	75	1	NT	NT	NT							
08/30/97 1.4	-Dichlorobenzene *	75	1	NT	NT	DRY							
03/10/98 1.4	-Dichlorobenzene *	75	1	NT	NT	DRY							
	-Dichlorobenzene *	75	1	NT	NT	DRY							
03/18/99 1.4	-Dichlorobenzene *	75	1	NT	NT	DRY							
09/21/99 1.4	-Dichlorobenzene *	75	1	NT	NT	DRY							
03/21/2000 1,4	-Dichlorobenzene *	75	1	NT	NT	DRY							
06/28/2000 1,4	-Dichlorobenzene *	75	1	NT	NT	DRY	<1	DRY	<1				
09/28/2000 1,4	-Dichlorobenzene *	75	1	NT	NT	DRÝ	DRY	DRY	<1				
12/27/2000 1,4	-Dichlorobenzene *	75	1	NT	NT	NT	DRY	DRY	<1				
03/28/2001 1,4	-Dichlorobenzene *	75	1	NT	NT	DRY	<1	DRY	DRY				
09/02/2001 1,4	-Dichlorobenzene *	75	1	NT	NT	DRY	NT	DRY	DRY				
03/19/2002 1,4	-Dichlorobenzene *	75	1	NT	NT	DRY	<1	DRY	<1				
09/19/2002 1,4	-Dichlorobenzene *	75	1	NT	NT	DRY	<1	<1	NT				
03/14/2003 1,4	-Dichlorobenzene *	75	1	NT	NT	DRY	NT	<1	NT				
09/29/2003 1,4	-Dichlorobenzene *	75	1	NT	NT	DRY	DRY	DRY	NT				
03/08/2004 1,4	-Dichlorobenzene *	75	1	NT	NT	DRY	NT	<1	NT				
09/27/2004 1,4	-Dichlorobenzene *	75	1	NT	NT	DRY	DRY	DRY	NT				
03/17/2005 1,4	-Dichlorobenzene *	75	1	NT	NT	DRY	NT	<1	NT				
09/22/2005 1,4	-Dichlorobenzene *	75	1	NT	NT	DRY	DRY	DRY	NT				
03/17/2006 1,4	-Dichlorobenzene *	75	1	NT	NT	DRY	NT	DRY	NT				
09/22/2006 1,4	-Dichlorobenzene *	75	1	NT	NT	DRY	DRY	DRY	NT				
Mea	an			ERR	ERR	ERR	ERR	ERR	ER				
	ndard Deviation (STD)			ERR	ERR	ERR	ERR	ERR	ER				
Mea	an + 2 STD			ERR	ERR	ERR	ERR	ERR	ER				

		T	MEAN +	SURFACE	MONITORIN	IG PTS.			
1		ACTION	2 STD						
DATE	PARAMETER	LEVEL	SW	SW 1	SW 2	SW 3	SW 4	SW 5	SW 6
	mg/L								
04/23/91	Arsenic, dissolved	0.05		<0.005	<0.005	<0.005			
10/15/91	Arsenic, dissolved	0.05	0.005	<0.005	<0.005	<0.005			
01/23/92	Arsenic, dissolved	0.05		<0.005	<0.005	<0.005			
03/23/92	Arsenic, dissolved	0.05	0.005	<0.005	<0.005	<0.005			
09/30/92	Arsenic, dissolved	0.05	0.005	NT	NT	NT			
03/05/93	Arsenic, dissolved	0.05	0.005	NT	NT	NT			
09/21/93	Arsenic, dissolved	0.05	0.005	NT	NT	NT			
03/23/94	Arsenic, dissolved	0.05	0.005	NT	NT	NT			
09/16/94	Arsenic, dissolved	0.05	0.005	NT	NT	NT			
03/16/95	Arsenic, dissolved	0.05	0.005	NT	NT	NT			
09/13/95	Arsenic, dissolved	0.05	0.005	NT	NT	NT			
03/28/96	Arsenic, dissolved	0.05	0.005	NT	NT	NT			
06/20/96	Arsenic, dissolved	0.05	0.005	NT	NT	NT			
09/13/96	Arsenic, dissolved	0.05	0.005	NT	NT	DRY			
03/19/97	Arsenic, dissolved	0.05	0.005	NT	NT	DRY			
06/18/97	Arsenic, dissolved	0.05	0.005	NT	NT	NT			
08/30/97	Arsenic, dissolved	0.05	0.005	NT	NT	DRY			
03/10/98	Arsenic, dissolved	0.05	0.005	NT	NT	DRY			
09/21/98	Arsenic, dissolved	0.05	0.005	NT	NT	DRY			
03/18/99	Arsenic, dissolved	0.05	0.005	NT	NT	DRY			
09/21/99	Arsenic, dissolved	0.05	0.005	NT	NT	DRY			
03/21/2000	Arsenic, dissolved	0.05	0.005	NT	NT	DRY			
06/28/2000	Arsenic, dissolved	0.05	0.005	NT	NT	DRY	0.006	DRY	0.01
09/28/2000	Arsenic, dissolved	0.05	0.005	NT	NT	DRY	DRY	DRY	0.014
12/27/2000	Arsenic, dissolved	0.05	0.005	NT	NT	NT	DRY	DRY	0.016
03/28/2001	Arsenic, dissolved	0.05	0.005	NT	NT	DRY	0.003	DRY	DRY
09/02/2001	Arsenic, dissolved	0.05	0.005	NT	NT	NT	NT	DRY	DRY
03/19/2002	Arsenic, dissolved	0.01	0.005	NT	NT	DRY	0.001	DRY	0.012
09/19/2002	Arsenic, dissolved	0.01	0.005	NT	NT	DRY	0.018	0.001	NT
03/14/2003	Arsenic, dissolved	0.01	0.005	NT	NT	DRY	NT	0.004	NT
09/29/2003	Arsenic, dissolved	0.01	0.005	NT	NT	DRY	DRY	DRY	NT
03/08/2004	Arsenic, dissolved	0.01	0.005	NT	NT	DRY	NT	0.002	NT
09/27/2004	Arsenic, dissolved	0.01	0.005	NT	NT	DRY	DRY	DRY	NT
03/17/2005	Arsenic, dissolved	0.01	0.005	NT	NT	DRY	NT	0.002	NT
09/22/2005	Arsenic, dissolved	0.01	0.005	NT	NT	DRY	DRY	DRY	NT
03/17/2006	Arsenic, dissolved	0.01	0.005	NT	NT	DRY	NT	DRY	NT
09/22/2006	Arsenic, dissolved	0.01	0.005	NT	NT	DRY	DRY	DRY	NT
50,22,2000	, alabarea .	5.51	0.000	•••		2	2	2	
	Mean Standard Deviation (STD)			ERF ERF			0.007 0.006595	0.001667 0.000471	0.013 0.002236
	Mean + 2 STD			ERF			0.020191	0.002609	0.002230
	WEAT T Z S I D			EKI	, ERR	LINK	0.020181	0.002008	0.017472

			MEAN +	URFACE M	ONITORING	PTS.			
		ACTION	2 STD						
DATE	PARAMETER	LEVEL	sw	SW 1	SW 2	SW 3	SW 4	SW 5	SW 6
	mg/L								
04/23/91	Barium, dissolved	2.000	0.108	0.104	0.089	0.096			
10/15/91	Barium, dissolved	2.000	0.108	0.094	0.090	0.140			
01/23/92	Barium, dissolved	2.000	0.108	0.084	0.085	0.102			
03/23/92	Barium, dissolved	2.000	0.108	0.090	0.091	0.093			
09/30/92	Barium, dissolved	2.000	0.108	NT	NT	NT			
03/05/93	Barium, dissolved	2.000	0.108	NT	NT	NT			
09/21/93	Barium, dissolved	2.000	0.108	NT	NT	NT			
03/23/94	Barium, dissolved	2.000	0.108	NT	NT	NT			
09/16/94	Barium, dissolved	2.000	0.108	NT	NT	NT			
03/16/95	Barium, dissolved	2.000	0.108	NT	NT	NT			
09/13/95	Barium, dissolved	2.000	0.108	NT	NT	NT			
03/28/96	Barium, dissolved	2.000	0.108	NT	NT	NT			
06/20/96	Barium, dissolved	2.000	0.108	NT	NT	NT			
09/13/96	Barium, dissolved	2.000	0.108	NT	NT	DRY			
03/19/97	Barium, dissolved	2.000	0.108	ΝT	NT	DRY			
06/18/97	Barium, dissolved	2.000	0.108	NT	NT	NT			
08/30/97	Barium, dissolved	2.000	0.108	NT	NT	DRY			
03/10/98	Barium, dissolved	2.000	0.108	NT	NT	DRY			
09/21/98	Barium, dissolved	2.000	0.108	NT	NT	DRY			
03/18/99	Barium, dissolved	2.000	0.108	NT	NT	DRY			
09/21/99	Barium, dissolved	2.000	0.108	NT	NT	DRY			
03/21/2000	Barium, dissolved	2.000	0.108	NT	NT	DRY			
06/28/2000	Barium, dissolved	2.000	0.108	NT	NT	DRY	0.202	DRY	0.124
09/28/2000	Barium, dissolved	2.000	0.108	NT	NT	DRY	DRY	DRY	0.136
12/27/2000	Barium, dissolved	2.000	0.108	NT	NT	NT	DRY	DRY	0.134
03/28/2001	Barium, dissolved	2.000	0.108	NT	NT	Dry	0.042	DRY	DRY
09/02/2001	Barium, dissolved	2.000	0.108	NT	NT	NŤ	NT	DRY	DRY
03/19/2002	Barium, dissolved	2.000	0.108	NT	NT	DRY	0.061	DRY	0.131
09/19/2002	Barium, dissolved	2.000	0.108	NT	NT	DRY	0.387	0.122	NT
03/14/2003	Barium, dissolved	2.000	0.108	NT	NT	DRY	NT	0.065	NT
09/29/2003	Barium, dissolved	2.000	0.108	NT	NT	DRY	DRY	DRY	NT
03/08/2004	Barium, dissolved	2.000	0.108	NT	NT	DRY	NT	0.096	NT
09/27/2004	Barium, dissolved	2.000	0.108	NT	NT	DRY	DRY	DRY	NT
03/17/2005	Barium, dissolved	2.000	0.108	NT	NT	DRY	NT	0.096	NT
09/22/2005	Barium, dissolved	2.000	0.108	ΝT	NT	DRY	DRY	DRY	NT
03/17/2006	Barium, dissolved	2.000	0.108	NT	NT	DRY	NT	DRY	NT
09/22/2006	Barium, dissolved	2.000	0.108	NT	NT	DRY	DRY	DRY	NT
	Mean			0.093	0.08875	0.10775	0.173	0.104667	0.13125
	Standard Deviation (STD)			0.00728	0.002278	0.018899	0.13815	0.012257	0.004548
•	Mean + 2 STD			0.10756	0.093305	0.145549	0.449301	0.12918	0.140347

		T		SURFACE N	ONITORING	PTS.			
		ACTION	2 STD						
DATE	PARAMETER	LEVEL	sw	SW 1	SW 2	SW 3	SW 4	SW 5	SW 6
	ug/L								
04/23/91	Benzene *	5	1	<1	<1	<1			
10/15/91	Benzene *	5	1	<1	<1	<1			
01/23/92	Benzene *	5	1	<1	<1	<1			
03/23/92	Benzene *	5	1	<1	<1	<1			
09/30/92	Benzene *	5	1	NT	NT	NT			
03/05/93	Benzene *	5	1	NT	NT	NT			
09/21/93	Benzene *	5	1	NT	NT	NT			
03/23/94	Benzene *	5	1	NT	NT	NT			
09/16/94	Benzene *	5	1	NT	NT	NT			
03/16/95	Benzene *	5	1	NT	NT	NT			
09/13/95	Benzene *	5	1	NT	NT	NT			
03/28/96	Benzene *	5	1	NT	NT	NT			
06/20/96	Benzene *	5	1	NT	NT	NT			
09/13/96	Benzene *	5	1	NT	NT	Dry			
03/19/97	Benzene *	5	1	NT	NT	DRY			
06/18/97	Benzene *	5	1	NT	NT	NT			
08/30/97	Benzene *	5	1	NT	NT	DRY			
03/10/98	Benzene *	5	1	NT	NT	DRY			
09/21/98	Benzene *	5	1	NT	NT	DRY			
03/18/99	Benzene *	5	1	NT	NT	DRY			
09/21/99	Benzene *	5	1	NT	NT	DRY			
03/21/2000	Benzene *	5	1	NT	NT	DRY			
06/28/2000	Benzene *	5	1	NT	NT	DRY	<1	DRY	<1
09/28/2000	Benzene *	5	1	NT	NT	DRY	DRY	NT	<1
12/27/2000	Benzene *	5	1	NT	NT	NT	DRY	DRY	<1
03/28/2001	Benzene *	5	1	NT	NT	Dry	<1	DRY	DRY
09/02/2001	Benzene *	5	1	NT	NT	NŤ	NT	DRY	DRY
03/19/2002	Benzene *	5	1	NT	NT	DRY	<1	NT	<1
09/19/2002	Benzene *	5	1	NT	NT	NT	<1	<1	NT
03/14/2003	Benzene *	5	1	NT	NT	NT	NT	<1	NT
09/29/2003	Benzene *	5	1	NT	NT	DRY	DRY	DRY	NT
03/08/2004	Benzene *	5	1	NT	NT	DRY	NT	<1	NT
09/27/2004	Benzene *	5	1	NT	NT	DRY	DRY	DRY	NT
03/17/2005	Benzene *	5	1	NT	NT	DRY	NT	<1	NT
09/22/2005	Benzene *	5	1	NT	NT	DRY	DRY	DRY	NT
03/17/2006	Benzene *	5	1	NT	NT	DRY	NT	DRY	NT
09/22/2006	Benzene *	5	1	NT	NT	DRY	DRY	DRY	NT
	Mean			ERR	ERR	ERR	ERR	ERR	ER
	Standard Deviation (STD)			ERR	ERR	ERR	ERR	ERR	ER
	Mean + 2 STD			ERR	ERR	ERR	ERR	ERR	ER

	1	T	MEAN +	SURFACE	MONITORIN	IG PTS.			
	·	ACTION	2 STD		-				
DATE	PARAMETER	LEVEL	sw	SW 1	SW 2	SW 3	SW 4	SW 5	SW 6
	mg/L			·					
04/23/91	Cadmium, dissolved	0.005	0.001	<0.001	<0.001	<0.001			
10/15/91	Cadmium, dissolved	0.005	0.001	<0.001	0.001	<0.001			
01/23/92	Cadmium, dissolved	0.005	0.001	<0.001	<0.001	< 0.001			
03/23/92	Cadmium, dissolved	0.005	0.001	< 0.001	<0.001	<0.001			
09/30/92	Cadmium, dissolved	0.005	0.001	NT	NT	NT			
03/05/93	Cadmium, dissolved	0.005	0.001	NT	NT	NT			
09/21/93	Cadmium, dissolved	0.005	0.001	NT	NT	NT			
03/23/94	Cadmium, dissolved	0.005	0.001	NT	NT	NT			
09/16/94	Cadmium, dissolved	0.005	0.001	NT	NT	NT			
03/16/95	Cadmium, dissolved	0.005	0.001	NT	NT	NT			
09/13/95	Cadmium, dissolved	0.005	0.001	NT	NT	NT			
03/28/96	Cadmium, dissolved	0.005	0.001	NT	NT	NT			
06/20/96	Cadmium, dissolved	0.005	0.001	NT	NT	NT			
09/13/96	Cadmium, dissolved	0.005	0.001	NT	NT	DRY			
03/19/97	Cadmium, dissolved	0.005	0.001	NT	NT	DRY			
06/18/97	Cadmium, dissolved	0.005	0.001	NT	NT	NT			
08/30/97	Cadmium, dissolved	0.005	0.001	NT	NT	DRY			
03/10/98	Cadmium, dissolved	0.005	0.001	NT	NT	DRY			
09/21/98	Cadmium, dissolved	0.005	0.001	NT	NT	DRY			
03/18/99	Cadmium, dissolved	0.005	0.001	NT	NT	DRY			
09/21/99	Cadmium, dissolved	0.005	0.001	NT	N.T	DRY			
03/21/2000	Cadmium, dissolved	0.005	0.001	NT	NT	DRY			
06/28/2000	Cadmium, dissolved	0.005	0.001	NT	NT	DRY	<0.001	DRY	<0.001
09/28/2000	Cadmium, dissolved	0.005	0.001	NT	NT	DRY	NT	NT	<0.001
12/27/2000	Cadmium, dissolved	0.005	0.001	NT	NT	NT	DRY	DRY	<0.001
03/28/2001	Cadmium, dissolved	0.005	0.001	NT	NT	DRY	<0.001	DRY	DRY
09/02/2001	Cadmium, dissolved	0.005	0.001	NT	NT	NT	NT	DRY	DRY
03/19/2002	Cadmium, dissolved	0.005	0.001	NT	NT	NT	<0.001	NT	<0.001
09/19/2002	Cadmium, dissolved	0.005	0.001	NT	NT	NT	<0.001	<0.001	NT
03/14/2003	Cadmium, dissolved	0.005	0.001	NT	NT	NT	NT	< 0.001	NT
09/29/2003	Cadmium, dissolved	0.005	0.001	NT	NT	DRY	DRY	DRY	NT
03/08/2004	Cadmium, dissolved	0.005	0.001	NT	NT	DRY	NT	<0.001	NT
09/27/2004	Cadmium, dissolved	0.005	0.001	NT	NT	DRY	DRY	DRY	NT
03/17/2005	Cadmium, dissolved	0.005	0.001	NT	NT	DRY	NT	<0.001	NT
09/22/2005	Cadmium, dissolved	0.005	0.001	NT	NT	DRY	DRY	DRY	NT
03/17/2006	Cadmium, dissolved	0.005	0.001	NT	NT	DRY	NT	DRY	NT
09/22/2006	Cadmium, dissolved	0.005	0.001	NT	NT	DRY	DRY	DRY	NT
	Mean		•	ERR			ERR	ERR	ERR
	Standard Deviation (STD)			ERF			ERR	ERR	ERR
	Mean + 2 STD			ERF	R ERR	ERR	ERR	ERR	ERR

				SURFACE M	ONITORING	PTS.			
		ACTION	2 STD						
DATE	PARAMETER	LEVEL	SW	SW 1	SW 2	SW 3	SW 4	_SW 5	SW 6
	ug/L								
04/23/91	Carbon tetrachloride *	5	1	<1	<1	<1			
10/15/91	Carbon tetrachloride *	5	1	<1	<1	<1			
01/23/92	Carbon tetrachloride *	5	1	<1	<1	<1			
03/23/92	Carbon tetrachloride *	5	1	<1	<1	<1			
09/30/92	Carbon tetrachloride *	5	1	NT	NT	NT			
03/05/93	Carbon tetrachloride *	5	1	NT	NT	NT			
09/21/93	Carbon tetrachloride *	5	1	NT	NT	NT			
03/23/94	Carbon tetrachloride *	5	1	NT	NT	NT			
09/16/94	Carbon tetrachloride *	5	1	NT	NT	NT			
03/16/95	Carbon tetrachloride *	5	1	NT	NT	NT			
09/13/95	Carbon tetrachloride *	5	1	NT	NT	NT			
03/28/96	Carbon tetrachloride *	5	1	NT	NT	NT			
06/20/96	Carbon tetrachloride *	5	1	NT	NT	NT			
09/13/96	Carbon tetrachioride *	5	1	NT	NT	DRY			
03/19/97	Carbon tetrachloride *	5	1	NT	NT	DRY			
06/18/97	Carbon tetrachloride *	5	1	NT	NT	NT			
08/30/97	Carbon tetrachloride *	5	1	NT	NT	DRY			
03/10/98	Carbon tetrachloride *	5	1	NT	NT	DRY			
09/21/98	Carbon tetrachloride *	5	1	NT	NT	DRY			
03/18/99	Carbon tetrachloride *	5	1	NT	NT	DRY			
09/21/99	Carbon tetrachloride *	5	1	NT	NT	DRY			
03/21/2000	Carbon tetrachloride *	5	1	NT	NT	DRY			
06/28/2000	Carbon tetrachloride *	5	1	NT	NT	DRY	<0.3	DRY	< 0.3
09/28/2000	Carbon tetrachloride *	5	1	NT	NT	DRY	DRY		<0.3
12/27/2000	Carbon tetrachloride *	5	1	NT	NT	NT	DRY		< 0.3
03/28/2001	Carbon tetrachloride *	5	1	NT	NT	DRY	<0.3		DRY
09/02/2001	Carbon tetrachloride *	5	1	NT	NT	NT	NT		DRY
03/19/2002	Carbon tetrachloride *	5	1	NT	NT	NT	<0.3		<0.3
09/19/2002	Carbon tetrachloride *	5	1	NT	NT	NT	<0.3		NT
03/14/2003	Carbon tetrachloride *	5	1	NT	NT	NT	NT		NT
09/29/2003	Carbon tetrachloride *	5	1	NT	NT	DRY	DRY		NT
03/08/2004	Carbon tetrachloride *	5	i i	NT	NT	DRY	NT		NT
09/27/2004	Carbon tetrachloride *	5	i	NT	NT	DRY	DRY		NT
03/17/2005	Carbon tetrachloride *	5	i i	NT	NT	DRY	NT		NT
09/22/2005	Carbon tetrachloride *	5	1	NT	NT	DRY	DRY		NT
03/17/2006	Carbon tetrachloride *	5	1	NT	NT	DRY	NT		NT
9/22/2006	Carbon tetrachloride *	5	i	NT	NT	DRY	DRY	DRY	NT
	Mean			ERR	ERR	ERR	ERR	EDD	EF
	Standard Deviation (STD)			ERR	ERR	ERR	ERR		E
	Granuaru Deviation (GTD)			EKK	EUU	ERR		DRY DRY DRY DRY NT <0.3 CRY <0.3 DRY <0.3 DRY ERR ERR ERR	C1

		MEAN + SURFACE MONITORING PTS.							
		ACTION	2 STD				0144.4		
DATE	PARAMETER	LEVEL	SW	SW 1	SW 2	SW 3	SW 4	SW 5	SW 6
	mg/L								
04/23/91	Chemical Oxygen Demand		43.23215	19.4	14.3	10.5			
10/15/91	Chemical Oxygen Demand		43.23215	12.8	11.3	<10			
01/23/92	Chemical Oxygen Demand		43.23215	14.3	<10	<10			
03/23/92	Chemical Oxygen Demand		43.23215	<10	<10	<10			
09/30/92	Chemical Oxygen Demand		43.23215	<10	<10	DRY			
03/05/93	Chemical Oxygen Demand		43.23215	49.6	40.8	DRY			
09/21/93	Chemical Oxygen Demand		43.23215	<10	<10	<10			
03/23/94	Chemical Oxygen Demand		43.23215	<10	<10	<10			
09/16/94	Chemical Oxygen Demand		43.23215	20	<10	NT			
03/16/95	Chemical Oxygen Demand		43.23215	21	<10	NT			
09/13/95	Chemical Oxygen Demand		43.23215	<10	NT	NT			
03/28/96	Chemical Oxygen Demand		43.23215	<10	<10	NT			
06/20/96	Chemical Oxygen Demand		43.23215	NT	NT	NT			
09/13/96	Chemical Oxygen Demand		43.23215	<10	<10	DRY			
03/19/97	Chemical Oxygen Demand		43.23215	<10	<10	DRY			
06/18/97	Chemical Oxygen Demand		43.23215	NT	NT	NT			
08/30/97	Chemical Oxygen Demand		43.23215	<10	<10	DRY			
03/10/98	Chemical Oxygen Demand		43.23215	<10	<10	DRY			
09/21/98	Chemical Oxygen Demand		43.23215	<10	<10	DRY			
03/18/99	Chemical Oxygen Demand		43.23215	<10	<10	DRY			
09/21/99	Chemical Oxygen Demand		43.23215	<10	<10	DRY			
03/21/2000	Chemical Oxygen Demand		43.23215	<10	<10	DRY			
06/28/2000	Chemical Oxygen Demand		43.23215	NT	NT	DRY	133	DRY	32
09/28/2000	Chemical Oxygen Demand		43.23215	<10	<10	DRY	DRY	DRY	<10
12/27/2000	Chemical Oxygen Demand		43.23215	NT	NT	NT	DRY	DRY	<10
03/28/2001	Chemical Oxygen Demand		43.23215	14	13	DRY	19	DRY	DRY
09/02/2001	Chemical Oxygen Demand		43.23215	13	14	DRY	NT	DRY	DRY
03/19/2002	Chemical Oxygen Demand		43.23215	<10	<10	DRY	84	DRY	10
09/19/2002	Chemical Oxygen Demand		43.23215	<10	<10	DRY	302	21	28
03/14/2003	Chemical Oxygen Demand		43.23215	44	57	DRY	38	24	<10
09/29/2003	Chemical Oxygen Demand		43.23215	17	18	DRY	DRY	DRY	14
03/08/2004	Chemical Oxygen Demand		43.23215	16	18	DRY	75	30	30
09/27/2004	Chemical Oxygen Demand		43.23215	14	<10	DRY	DRY	DRY	23
03/17/2005	Chemical Oxygen Demand		43.23215	<10	<10	DRY	75	30	11
09/22/2005	Chemical Oxygen Demand		43.23215	24	14	DRY	DRY	DRY	15
03/17/2006	Chemical Oxygen Demand		43,23215	<10	<10	DRY	13	DRY	<10
09/22/2006	Chemical Oxygen Demand		43.23215	11	<10	DRY	DRY	DRY	11

MONITORING WELL SAMPLING RESULTS

			Secondary		SURFACE !	MONITORIN	G PTS.			
	1		MCL	2 STD						
DATE		PARAMETER	LEVEL	sw	SW 1	SW 2	SW 3	SW 4	SW 5	SW 6
		mg/L								
04/23/91	Chloride		250	327.0107	39.5	39	11.5			
10/15/91	Chloride		250	327.0107	138	135	8.02			
01/23/92	Chloride		250	327.0107	55.1	60.3	12.1			
03/23/92	Chloride		250	327.0107	59.7	60.2	14.8			
09/30/92	Chloride		250	327.0107	89	88	DRY			
03/05/93	Chloride		250	327.0107	22.5	23.5	DRY			
09/21/93	Chloride		250	327.0107	27.4	28.4	16.6			
03/23/94	Chloride		250	327.0107	64.1	64.1	19.8			
09/16/94	Chloride		250	327.0107	148	130	NT			
03/16/95	Chloride		250	327.0107	226	NT	NT			
09/13/95	Chloride		250	327.0107	98	212	NT			
03/28/96	Chloride		250	327.0107	137	144	NT			
06/20/96	Chloride		250	327.0107	NT	NT	NT			
09/13/96	Chloride		250	327.0107	<1	78.9	Dry			
03/19/97	Chloride		250	327.0107	148	130	DRY			
06/18/97	Chloride		250	327.0107	NT	NT	NT			
08/30/97	Chloride		250	327.0107	120	171	DRY			
03/10/98	Chloride		250	327.0107	136	145	DRY			
09/21/98	Chloride		250	327.0107	86	116	DRY			
03/18/99	Chloride		250	327.0107	93	81	DRY			
09/21/99	Chloride		250	327.0107	84	80	DRY			
03/21/2000	Chloride		250	327.0107	95	63	DRY			
06/28/2000	Chloride		250	327.0107	NT	NT	DRY	201	DRY	2
09/28/2000	Chloride		250	327.0107	98	179	DRY	DRY	DRY	42
12/27/2000	Chloride		250	327.0107	NT	NT	NT	DRY	DRY	41
03/28/2001	Chloride		250	327.0107	100	97	DRY	37	DRY	DRY
09/02/2001	Chloride		250	327.0107	78	75	DRY	NT	DRY	DRY
03/19/2002	Chloride		250	327.0107	145	154	DRY	129	DRY	54
09/19/2002	Chloride		250	327.0107	158	194	DRY	56	11	59
03/14/2003	Chloride		250	327.0107	263	238	DRY	108	143	60
09/29/2003	Chloride		250	327.0107	58	77	DRY	DRY	DRY	68
03/08/2004	Chloride		250	327.0107	192	195	DRY	136	36	73
09/27/2004	Chloride		250	327.0107	111	138	DRY	DRY	DRY	76
03/17/2005	Chloride		250	327.0107	147	125	DRY	136	36	75
09/22/2005	Chloride		250	327.0107	131	130	DRY	DRY	DRY	85
03/17/2006	Chloride		250	327.0107	602	631	DRY	73	DRY	94
09/22/2006	Chloride		250	327.0107	110	110	DRY	DRY	DRY	94

Mean Standard Deviation (STD) Mean + 2 STD
 126.8531
 131.0125
 13.80333
 109.5
 56.5
 65.38462

 100.0788
 104.3092
 3.795355
 49.5101
 50.97303
 19.52725

 327.0107
 339.6309
 21.39404
 208.5202
 158.4461
 104.4391

		1	MEAN+	SURFACE	MONITORIN	G PTS.			
1		ACTION	2 STD						
DATE	PARAMETER	LEVEL	SW	SW 1	SW 2	SW 3	SW 4	SW 5	SW 6
	mg/L								
04/23/91	Chromium, dissolved	0.1	0.03	<0.03	<0.03	<0.03			
10/15/91	Chromium, dissolved	0.1	0.03	<0.03	<0.03	<0.03			
01/23/92	Chromium, dissolved	0.1	0.03	<0.03	<0.03	<0.03			
03/23/92	Chromium, dissolved	0.1	0.03	<0.03	<0.03	<0.03			
09/30/92	Chromium, dissolved	0.1	0.03	NT	NT	NT			
03/05/93	Chromium, dissolved	0.1	0.03	NT	NT	NT			
09/21/93	Chromium, dissolved	0.1	0.03	NT	NT	NT			
03/23/94	Chromium, dissolved	0.1	0.03	NT	NT	NT			
09/16/94	Chromium, dissolved	0.1	0.03	NT	NT	NT			
03/16/95	Chromium, dissolved	0.1	0.03	NT	NT	NT			
09/13/95	Chromium, dissolved	0.1	0.03	NT	NT	NT			
03/28/96	Chromium, dissolved	0.1	0.03	NT	NT	NT			
06/20/96	Chromium, dissolved	0.1	0.03	NT	NT	NT			
09/13/96	Chromium, dissolved	0.1	0.03	NT	NT	DRY			
03/19/97	Chromium, dissolved	0.1	0.03	NT	NT	DRY			
06/18/97	Chromium, dissolved	0.1	0.03	NT	NT	NT			
08/30/97	Chromium, dissolved	0.1	0.03	NT	NT	DRY			
03/10/98	Chromium, dissolved	0.1	0.03	NT	NT	DRY			
09/21/98	Chromium, dissolved	0.1	0.03	NT	NT	DRY			
03/18/99	Chromium, dissolved	0.1	0.03	NT	NT	DRY			
09/21/99	Chromium, dissolved	0.1	0.03	NT	NT	DRY			
03/21/2000	Chromium, dissolved	0.1	0.03	NT	NT	DRY			
06/28/2000	Chromium, dissolved	0.1	0.03	NT	NT	DRY	<0.03	DRY	<0.03
09/28/2000	Chromium, dissolved	0.1	0.03	NT	NT	DRY	DRY	DRY	<0.03
12/27/2000	Chromium, dissolved	0.1	0.03	NT	NT	NT	DRY	DRY	<0.03
03/28/2001	Chromium, dissolved	0.1	0.03	NT	NT	DRY	<0.03	DRY	DRY
09/02/2001	Chromium, dissolved	0.1	0.03	NT	NT	NT	NT	DRY	DRY
03/19/2002	Chromium, dissolved	0.1	0.03	NT	NT	NT	<0.005	Dry	<0.005
09/19/2002	Chromium, dissolved	0.1	0.03	NT	NT	NT	<0.005	<0.005	NT
03/14/2003	Chromium, dissolved	0.1	0.03	NT	NT	DRY	NT	<0.005	NT
09/29/2003	Chromium, dissolved	0.1	0.03	NT	NT	DRY	DRY	DRY	NT
03/08/2004	Chromium, dissolved	0.1	0.03	NT	NT	DRY	NT	<0.005	NT
09/27/2004	Chromium, dissolved	0.1	0.03	NT	NT	DRY	DRY	DRY	NT
03/17/2005	Chromium, dissolved	0.1	0.03	NT	NT	DRY	NT	<0.005	NT
09/22/2005	Chromium, dissolved	0.1	0.03	NT	NT	DRY	DRY	DRY	NT
03/17/2006	Chromium, dissolved	0.1	0.03	NT	NT	DRY	NT	DRY	NT
09/22/2006	Chromium, dissolved	0.1	0.03	NT	NT	DRY	DRY	DRY	NT
	Mean			ERR			ERR	ERR	ERR
	Standard Deviation (STD)			ERR			ERR	ERR	ERR
	Mean + 2 STD			ERR	R ERR	ERR	ERR	ERR	ERR

			1	URFACE I	MONITORIN	G PTS.			
		ACTION	2 STD						
DATE	PARAMETER	LEVEL	sw	SW 1	SW 2	SW 3	SW 4	SW 5	SW 6
03/18/05	Conductivity, us/cm		1790.68	420	DRY	DRY			
	Conductivity, us/cm	••	1790.68	500	540	DRY			
	Conductivity, us/cm		1790.68	420	450	DRY			
	Conductivity, us/cm		1790.68	NT	NT	DRY			
	Conductivity, us/cm		1790.68	360	370	DRY			
	Conductivity, us/cm		1790.68	520	490	DRY			
	Conductivity, us/cm		1790.68	NT	NT	NT			
	Conductivity, us/cm		1790.68	430	540	DRY			
	Conductivity, us/cm		1790.68	300	350	DRY			
	Conductivity, us/cm		1790.68	350	360	DRY			
	Conductivity, us/cm	••	1790.68	702	560	DRY			
	Conductivity, us/cm		1790.68	360	350	DRY			
	Conductivity, us/cm		1790.68	NT	NT	DRY			
	Conductivity, us/cm		1790.68	NT	NT	DRY	1670	DRY	1123
	Conductivity, us/cm		1790.68	NT	NT	DRY	DRY	DRY	1332
	Conductivity, us/cm		1790.68	NT	NT	NT	DRY	DRY	1183
	Conductivity, us/cm	**	1790.68	685	702	DRY	442	DRY	DRY
	Conductivity, us/cm		1790.68	586	583	DRY	NT	DRY	DRY
	Conductivity, us/cm		1790.68	1127	1127	DRY	880	DRY	1505
	Conductivity, us/cm		1790.68	1209	960	DRY	14680	990	1444
	Conductivity, us/cm		1790.68	750	780	DRY	1260	860	625
	Conductivity, us/cm		1790.68	468	675	DRY	DRY	DRY	1262
	Conductivity, us/cm		1790.68	1017	1025	DRY	3622	886	1475
	Conductivity, us/cm		1790.68	871	1096	DRY	DRY	DRY	1400
	Conductivity, us/cm		1790.68	966	923	DRY	DRY	DRY	1378
	Conductivity, us/cm		1790.68	893	NT	DRY	DRY	DRY	1021
	Conductivity, us/cm		1790.68	2785	3575	DRY	749	DRY	1572
	Conductivity, us/cm		1790.68	913	946	DRY	DRY	DRY	1415

MONITORING WELL SAMPLING RESULTS

DATE PARAMETER LEVEL SW SW1 SW2 SW3 SW4 SW5 SW6	·	-			SURFACE	MONITORIN	IG PTS.			
May	DATE	PARAMETER	ACTION	2 STD SW	SW 1	SW 2	SW 3	SW 4	SW 5	SWE
0.4/23/91 Copper, dissolved	DAIL				011 1	0112			5,770	- 544.0
10/15/91 Copper, dissolved	04/23/91		1.3	0.03	<0.03	<0.03	< 0.03			
01/23/92 Copper, dissolved 1.3 0.03 <0.03 <0.03 <0.03 03/23/92 Copper, dissolved 1.3 0.03 <0.03 <0.03 <0.03 <0.03 09/30/92 Copper, dissolved 1.3 0.03 NT NT NT NT OT NT OSCIOLAR CORRESPONDED NO. NO. NT NT NT NT OSCIOLAR CORRESPONDED NO. NT			1.3	0.03	<0.03	<0.03	< 0.03			
09/30/92 Copper, dissolved 1.3 0.03 NT NT NT NT 09/21/93 Copper, dissolved 1.3 0.03 NT NT NT NT 09/21/93 Copper, dissolved 1.3 0.03 NT NT NT NT 09/21/93 Copper, dissolved 1.3 0.03 NT NT NT NT 09/16/94 Copper, dissolved 1.3 0.03 NT NT NT NT 09/16/94 Copper, dissolved 1.3 0.03 NT NT NT NT 09/16/94 Copper, dissolved 1.3 0.03 NT NT NT NT 09/13/95 Copper, dissolved 1.3 0.03 NT NT NT NT 09/13/95 Copper, dissolved 1.3 0.03 NT NT NT NT 09/13/95 Copper, dissolved 1.3 0.03 NT NT NT NT 09/13/96 Copper, dissolved 1.3 0.03 NT NT NT NT 09/13/96 Copper, dissolved 1.3 0.03 NT NT NT NT 09/13/96 Copper, dissolved 1.3 0.03 NT NT NT DRY 03/19/97 Copper, dissolved 1.3 0.03 NT NT DRY 03/19/99 Copper, dissolved 1.3 0.03 NT NT DRY 03/19/99 Copper, dissolved 1.3 0.03 NT NT DRY 03/19/99 Copper, dissolved 1.3 0.03 NT NT DRY 03/19/90 Copper, dissolved 1.3 0.03 NT NT DRY 03/19/90 Copper, dissolved 1.3 0.03 NT NT DRY 03/11/99 Copper, dissolved 1.3 0.03 NT NT DRY 03/11/90 Copper, dissolved 1.3 0.03 NT NT DRY 04/10/90 Copper, dissolved 1.3 0.03 NT NT DRY 05/11/90 Copper, dissolved 1.3 0.03 NT NT DRY 0.00 DRY 05/11/90 DRY 05/11/90 Copper, dissolved 1.3 0.03 NT NT DRY 0.00 DRY 05/11/90 Copper, dissolved 1.3 0.03 NT NT DRY 0.00 DRY 05/11/90 DRY 05/11/90 Copper, dissolved 1.3 0.03 NT NT DRY 0.00 DRY 05/11/90 DRY 05/11/90 Copper, dissolved 1.3 0.03 NT NT DRY NT DRY 0.00 DRY 05/11/90 DRY 05/11/90 Copper, dissolved 1.3 0.03 NT NT NT DRY DRY 0.00 DRY 05/11/90 Copper, dissolved 1.3 0.03 NT NT NT DRY NT DRY 0.00 NT 09/11/90 Copper, dissolved 1.3 0.03 NT NT NT DRY NT 0.00 NT 09/11/90 Copper, dissolved 1.3 0.03 NT NT NT DRY NT 0.00 NT 09/11/90 DRY DRY DRY DRY DRY DRY DRY DRY NT 0.00 NT DRY DRY			1.3	0.03	< 0.03	<0.03	<0.03			
03/05/93 Copper, dissolved 1.3 0.03 NT NT NT NT 03/21/94 Copper, dissolved 1.3 0.03 NT NT NT NT 03/21/94 Copper, dissolved 1.3 0.03 NT NT NT NT 03/16/95 Copper, dissolved 1.3 0.03 NT NT NT NT 03/16/95 Copper, dissolved 1.3 0.03 NT NT NT NT NT 03/16/95 Copper, dissolved 1.3 0.03 NT NT NT NT NT 03/16/95 Copper, dissolved 1.3 0.03 NT NT NT NT NT O6/20/96 Copper, dissolved 1.3 0.03 NT NT NT NT O6/20/96 Copper, dissolved 1.3 0.03 NT NT NT DRY O3/19/97 Copper, dissolved 1.3 0.03 NT NT DRY O3/19/97 Copper, dissolved 1.3 0.03 NT NT DRY O3/10/98 Copper, dissolved 1.3 0.03 NT NT DRY O3/21/99 Copper, dissolved 1.3 0.03 NT NT DRY O3/21/99 Copper, dissolved 1.3 0.03 NT NT DRY O3/21/99 Copper, dissolved 1.3 0.03 NT NT DRY O3/21/200 Copper, dissolved 1.3 0.03 NT NT DRY O3/21/200 Copper, dissolved 1.3 0.03 NT NT DRY O3/21/200 Copper, dissolved 1.3 0.03 NT NT DRY O.03 O3/28/2000 Copper, dissolved 1.3 0.03 NT NT DRY O.03 O3/28/2000 Copper, dissolved 1.3 0.03 NT NT DRY O.03 O3/28/2000 Copper, dissolved 1.3 0.03 NT NT DRY O.03 O3/28/2000 Copper, dissolved 1.3 0.03 NT NT DRY O.03 O3/28/2000 Copper, dissolved 1.3 0.03 NT NT DRY O.05 NT O3/14/2003 Copper, dissolved 1.3 0.03 NT NT DRY DRY DRY DRY O3/14/2003 Copper, dissolved 1.3 0.03 NT NT DRY DR	03/23/92	Copper dissolved	1.3	0.03	<0.03	<0.03	<0.03			
03/05/93 Copper, dissolved 1.3 0.03 NT NT NT NT 09/21/93 Copper, dissolved 1.3 0.03 NT NT NT NT NT 03/21/94 Copper, dissolved 1.3 0.03 NT NT NT NT NT 03/16/95 Copper, dissolved 1.3 0.03 NT NT NT NT NT 03/16/95 Copper, dissolved 1.3 0.03 NT NT NT NT NT NT 03/16/95 Copper, dissolved 1.3 0.03 NT NT NT NT NT NT 03/28/96 Copper, dissolved 1.3 0.03 NT NT NT NT NT 06/20/96 Copper, dissolved 1.3 0.03 NT NT NT NT O9/13/96 Copper, dissolved 1.3 0.03 NT NT DRY O3/19/97 Copper, dissolved 1.3 0.03 NT NT DRY O3/19/97 Copper, dissolved 1.3 0.03 NT NT DRY O3/10/98 Copper, dissolved 1.3 0.03 NT NT DRY O3/16/99 Copper, dissolved 1.3 0.03 NT NT DRY O3/21/99 Copper, dissolved 1.3 0.03 NT NT DRY O3/21/90 Copper, dissolved 1.3 0.03 NT NT DRY O3/21/900 Copper, dissolved 1.3 0.03 NT NT DRY C.0.3 DRY C.0.3 O3/28/2000 Copper, dissolved 1.3 0.03 NT NT DRY O3/21/2000 Copper, dissolved 1.3 0.03 NT NT DRY C.0.03 DRY C.0.03 O3/28/2000 Copper, dissolved 1.3 0.03 NT NT NT DRY O.0.05 NT O3/14/2003 Copper, dissolved 1.3 0.03 NT NT NT DRY O.0.05 NT O3/14/2003 Copper, dissolved 1.3 0.03 NT NT DRY			1.3	0.03	NT	NT	NT			
03/23/94 Copper, dissolved 1.3 0.03 NT NT NT NT NT 03/16/94 Copper, dissolved 1.3 0.03 NT NT NT NT NT NT 03/16/95 Copper, dissolved 1.3 0.03 NT NT NT NT NT 09/13/95 Copper, dissolved 1.3 0.03 NT NT NT NT NT NT 06/28/96 Copper, dissolved 1.3 0.03 NT NT NT NT NT NT 06/20/96 Copper, dissolved 1.3 0.03 NT NT NT NT NT 06/20/96 Copper, dissolved 1.3 0.03 NT NT NT NT ORY 03/19/97 Copper, dissolved 1.3 0.03 NT NT DRY 03/19/97 Copper, dissolved 1.3 0.03 NT NT DRY 06/13/96 Copper, dissolved 1.3 0.03 NT NT DRY 06/13/96 Copper, dissolved 1.3 0.03 NT NT DRY 03/10/98 Copper, dissolved 1.3 0.03 NT NT DRY 03/11/99 Copper, dissolved 1.3 0.03 NT NT DRY 03/11/99 Copper, dissolved 1.3 0.03 NT NT DRY 03/11/200 Copper, dissolved 1.3 0.03 NT NT DRY 0.03 DRY 0.03 09/28/200 Copper, dissolved 1.3 0.03 NT NT DRY 0.03 DRY 0.03 09/28/200 Copper, dissolved 1.3 0.03 NT NT DRY 0.03 DRY 0.03 09/28/200 Copper, dissolved 1.3 0.03 NT NT DRY 0.03 DRY 0.03 09/28/200 Copper, dissolved 1.3 0.03 NT NT DRY 0.03 DRY 0.03 09/28/200 Copper, dissolved 1.3 0.03 NT NT DRY 0.05 NT 0.005 NT 0.007/2002 Copper, dissolved 1.3 0.03 NT NT NT DRY 0.05 NT 0.005 NT 0.007/2004 Copper, dissolved 1.3 0.03 NT NT NT DRY NT 0.005 NT 0.006 NT 0.007/2005 Copper, dissolved 1.3 0.03 NT NT NT DRY DRY DRY NT 0.005 NT 0.006/28/2005 Copper, dissolved 1.3 0.03 NT NT DRY DRY DRY NT 0.005 NT 0.007/2006 Copper, dissolved 1.3 0.03 NT NT DRY DRY DRY NT 0.005 NT 0.005 NT 0.006/28/2005 Copper, dissolved 1.3 0.03 NT NT DRY DRY DRY NT 0.005 NT 0.006/27/2006 Copper, dissolved 1.3 0.03 NT NT DRY DRY DRY NT 0.005 NT 0.007/2006 Copper, di	03/05/93	Copper dissolved	1.3	0.03	NT	NT	NT			
09/16/94 Copper, dissolved 1.3 0.03 NT NT NT NT NT 09/13/95 Copper, dissolved 1.3 0.03 NT NT NT NT NT NT 09/13/95 Copper, dissolved 1.3 0.03 NT NT NT NT NT NT 09/13/95 Copper, dissolved 1.3 0.03 NT NT NT NT NT NT NT 09/13/95 Copper, dissolved 1.3 0.03 NT NT NT NT NT NT NT NT 09/13/97 Copper, dissolved 1.3 0.03 NT NT NT NT NT OPRY 03/19/97 Copper, dissolved 1.3 0.03 NT NT NT DRY 03/19/97 Copper, dissolved 1.3 0.03 NT NT DRY 08/13/96 Copper, dissolved 1.3 0.03 NT NT DRY 08/13/96 Copper, dissolved 1.3 0.03 NT NT DRY 08/13/96 Copper, dissolved 1.3 0.03 NT NT DRY 09/21/98 Copper, dissolved 1.3 0.03 NT NT DRY 09/21/98 Copper, dissolved 1.3 0.03 NT NT DRY 09/21/99 Copper, dissolved 1.3 0.03 NT NT DRY 03/21/2000 Copper, dissolved 1.3 0.03 NT NT DRY 03/21/2000 Copper, dissolved 1.3 0.03 NT NT DRY 03/22/2000 Copper, dissolved 1.3 0.03 NT NT DRY 03/22/2000 Copper, dissolved 1.3 0.03 NT NT DRY 08/22/2000 Copper, dissolved 1.3 0.03 NT NT DRY 0.03 DRY 0.03 09/28/2001 Copper, dissolved 1.3 0.03 NT NT DRY 0.03 DRY 0.03 09/28/2001 Copper, dissolved 1.3 0.03 NT NT DRY 0.03 DRY 0.03 DRY 09/02/2001 Copper, dissolved 1.3 0.03 NT NT NT DRY 0.03 DRY 0.03 09/28/2001 Copper, dissolved 1.3 0.03 NT NT NT NT DRY 0.03 DRY 0.03 09/28/2001 Copper, dissolved 1.3 0.03 NT NT NT NT NT NT DRY 0.05 NT 0.005 NT NT NT DRY DRY 0.005 NT 0.005 NT 0.005 NT NT NT DRY DRY DRY NT 0.005 NT 0.005 NT NT NT DRY DRY DRY NT 0.005 NT 0.006/27/2004 Copper, dissolved 1.3 0.03 NT NT DRY DRY DRY NT 0.005 NT 0.006/27/2004 Copper, dissolved 1.3 0.03 NT NT DRY DRY DRY NT 0.005 NT 0.006/27/2004 Copper, dissolved 1.3 0.03 NT NT DRY DRY DRY NT 0.005 NT 0.006/27/2004 Copper, dissolved 1.3 0.03 NT NT DRY DRY DRY NT 0.005 NT 0.006/27/2004 Copper, dissolved 1.3 0.03 NT NT DRY DRY DRY NT 0.005 NT 0.006/27/2004 Copper, dissolved 1.3 0.03 NT NT DRY DRY DRY NT 0.005 NT 0.006/27/2004 Copper, d	09/21/93	Copper, dissolved	1.3	0.03	NT	NT	NT			
03/16/95 Copper, dissolved 1.3 0.03 NT NT NT NT NT 03/18/95 Copper, dissolved 1.3 0.03 NT NT NT NT NT 03/18/96 Copper, dissolved 1.3 0.03 NT NT NT NT NT 06/20/96 Copper, dissolved 1.3 0.03 NT NT NT NT NT NT 09/13/96 Copper, dissolved 1.3 0.03 NT NT NT NT NT NT NT 09/13/96 Copper, dissolved 1.3 0.03 NT NT DRY 03/19/97 Copper, dissolved 1.3 0.03 NT NT DRY 06/18/97 Copper, dissolved 1.3 0.03 NT NT DRY 08/30/97 Copper, dissolved 1.3 0.03 NT NT DRY 03/10/98 Copper, dissolved 1.3 0.03 NT NT DRY 03/10/98 Copper, dissolved 1.3 0.03 NT NT DRY 09/21/99 Copper, dissolved 1.3 0.03 NT NT DRY 09/21/90 Copper, dissolved 1.3 0.03 NT NT DRY 09/21/90 Copper, dissolved 1.3 0.03 NT NT DRY 09/21/90 Copper, dissolved 1.3 0.03 NT NT DRY 09/21/20 Copper, dissolved 1.3 0.03 NT NT DRY 09/21/200 Copper, dissolved 1.3 0.03 NT NT DRY 0.03 DRY 0.03 09/28/2001 Copper, dissolved 1.3 0.03 NT NT DRY DRY 0.03 03/28/2001 Copper, dissolved 1.3 0.03 NT NT NT DRY 0.03 DRY 0.03 03/28/2001 Copper, dissolved 1.3 0.03 NT NT NT NT NT DRY 0.03 DRY 0.03 03/28/2001 Copper, dissolved 1.3 0.03 NT NT NT NT NT DRY 0.005 NT 03/19/2002 Copper, dissolved 1.3 0.03 NT NT NT NT NT DRY 0.005 NT 03/19/2002 Copper, dissolved 1.3 0.03 NT NT NT NT NT DRY DRY DRY NT 03/19/2002 Copper, dissolved 1.3 0.03 NT NT NT DRY DRY DRY NT 03/19/2002 Copper, dissolved 1.3 0.03 NT NT NT DRY DRY DRY NT 03/19/2002 Copper, dissolved 1.3 0.03 NT NT NT DRY DRY DRY NT 03/19/2002 Copper, dissolved 1.3 0.03 NT NT DRY DRY DRY NT 03/19/2002 Copper, dissolved 1.3 0.03 NT NT DRY DRY DRY NT 03/19/2002 Copper, dissolved 1.3 0.03 NT NT DRY DRY DRY NT 03/19/2002 Copper, dissolved 1.3 0.03 NT NT DRY DRY DRY DRY NT 03/19/2002 Copper, dissolved 1.3 0.03 NT NT DRY DRY DRY DRY NT 03/19/2002 Copper, dissolved 1.3 0.03 NT NT DRY DRY DRY NT 03/19/2002 Copper, dissolved 1.3 0.03 NT NT	03/23/94	Copper, dissolved	1.3	0.03	NT	NT	NT			
09/13/95 Copper, dissolved 1.3 0.03 NT NT NT NT O6/20/96 Copper, dissolved 1.3 0.03 NT NT NT NT O6/20/96 Copper, dissolved 1.3 0.03 NT NT NT NT O6/20/96 Copper, dissolved 1.3 0.03 NT NT NT NT O7/97 Copper, dissolved 1.3 0.03 NT NT DRY O3/19/97 Copper, dissolved 1.3 0.03 NT NT DRY O6/18/97 Copper, dissolved 1.3 0.03 NT NT DRY O6/18/97 Copper, dissolved 1.3 0.03 NT NT DRY O6/18/97 Copper, dissolved 1.3 0.03 NT NT DRY O6/21/98 Copper, dissolved 1.3 0.03 NT NT DRY O6/21/98 Copper, dissolved 1.3 0.03 NT NT DRY O6/21/99 Copper, dissolved 1.3 0.03 NT NT DRY O6/22/000 Copper, dissolved 1.3 0.03 NT NT DRY O6/22/2000 Copper, dissolved 1.3 0.03 NT NT DRY O6/22/2000 Copper, dissolved 1.3 0.03 NT NT DRY O6/22/2000 Copper, dissolved 1.3 0.03 NT NT DRY O7/20/2000 Copper, dissolved 1.3 0.03 NT NT DRY DRY O.03 DRY <0.03 07/28/2000 Copper, dissolved 1.3 0.03 NT NT DRY DRY O.03 07/28/2000 Copper, dissolved 1.3 0.03 NT NT DRY DRY O.03 07/28/2000 Copper, dissolved 1.3 0.03 NT NT NT DRY DRY O.03 07/28/2000 Copper, dissolved 1.3 0.03 NT NT NT DRY DRY O.03 07/28/2000 Copper, dissolved 1.3 0.03 NT NT NT DRY DRY O.03 07/28/2000 Copper, dissolved 1.3 0.03 NT NT NT DRY DRY O/003 07/28/2000 Copper, dissolved 1.3 0.03 NT NT NT DRY DRY DRY O/003 07/28/2000 Copper, dissolved 1.3 0.03 NT NT NT NT DRY			1.3	0.03	NT	NT	NT			
03/28/96 Copper, dissolved 1.3 0.03 NT NT NT NT OBY 09/19/97 Copper, dissolved 1.3 0.03 NT NT DRY 08/18/97 Copper, dissolved 1.3 0.03 NT NT DRY 09/21/98 Copper, dissolved 1.3 0.03 NT NT DRY 09/21/99 Copper, dissolved 1.3 0.03 NT NT DRY 08/21/2000 Copper, dissolved 1.3 0.03 NT NT DRY 08/21/2000 Copper, dissolved 1.3 0.03 NT NT DRY 08/28/2000 Copper, dissolved 1.3 0.03 NT NT DRY 08/28/2000 Copper, dissolved 1.3 0.03 NT NT DRY 08/28/2000 Copper, dissolved 1.3 0.03 NT NT DRY 08/29/2000 Copper, dissolved 1.3 0.03 NT NT NT DRY 08/29/2000 Copper, dissolved 1.3 0.03 NT NT NT DRY 08/29/2000 Copper, dissolved 1.3 0.03 NT NT NT NT DRY 08/29/2000 Copper, dissolved 1.3 0.03 NT NT NT NT NT DRY 08/29/2000 Copper, dissolved 1.3 0.03 NT NT NT NT NT 0.005 NT 09/29/2002 Copper, dissolved 1.3 0.03 NT NT NT NT DRY DRY NT 0.005 NT 09/29/2003 Copper, dissolved 1.3 0.03 NT NT NT DRY DRY DRY NT 0.005 NT 09/29/2004 Copper, dissolved 1.3 0.03 NT NT DRY NT 0.005 NT 09/29/2004 Copper, dissolved 1.3 0.03 NT NT DRY DRY DRY NT 0.005 NT 09/29/2004 Copper, dissolved 1.3 0.03 NT NT DRY DRY DRY NT 0.005 NT 09/29/2005 Copper, dissolved 1.3 0.03 NT NT DRY DRY DRY NT 0.005 NT 09/29/2006 Copper, dissolved 1.3 0.03 NT NT DRY DRY DRY NT 0.005 NT 09/29/2006 Copper, dissolved 1.3 0.03 NT NT DRY DRY DRY DRY NT 0.005 NT 09/29/2006 Copper, dissolved 1.3 0.03 NT NT DRY DRY DRY DRY NT 0.005 NT 09/29/2006 Copper, dissolved 1.3 0.03 NT NT DRY DRY DRY DRY NT 0.005 NT	03/16/95	Copper dissolved	1.3	0.03	NT	NT	. NT			
03/28/96 Copper, dissolved 1.3 0.03 NT NT NT 06/20/96 Copper, dissolved 1.3 0.03 NT NT NT 09/13/96 Copper, dissolved 1.3 0.03 NT NT DRY 03/19/97 Copper, dissolved 1.3 0.03 NT NT NT 08/30/97 Copper, dissolved 1.3 0.03 NT NT DRY 03/10/98 Copper, dissolved 1.3 0.03 NT NT DRY 09/21/98 Copper, dissolved 1.3 0.03 NT NT DRY 03/16/99 Copper, dissolved 1.3 0.03 NT NT DRY 03/21/2000 Copper, dissolved 1.3 0.03 NT NT DRY 03/21/2000 Copper, dissolved 1.3 0.03 NT NT DRY 06/28/2000 Copper, dissolved 1.3 0.03 NT NT DRY <0.03	09/13/95	Copper, dissolved	1.3	0.03	NT	NT	NT			
06/20/96 Copper, dissolved 1.3 0.03 NT NT DRY 09/13/96 Copper, dissolved 1.3 0.03 NT NT DRY 03/19/97 Copper, dissolved 1.3 0.03 NT NT DRY 06/18/97 Copper, dissolved 1.3 0.03 NT NT DRY 08/30/97 Copper, dissolved 1.3 0.03 NT NT DRY 03/10/98 Copper, dissolved 1.3 0.03 NT NT DRY 09/21/98 Copper, dissolved 1.3 0.03 NT NT DRY 09/21/99 Copper, dissolved 1.3 0.03 NT NT DRY 09/21/99 Copper, dissolved 1.3 0.03 NT NT DRY 09/21/99 Copper, dissolved 1.3 0.03 NT NT DRY 09/21/200 Copper, dissolved 1.3 0.03 NT NT DRY 03/22/200 Copper, dissolved 1.3 0.03 NT NT DRY DRY Q.03 <			1.3			NT	NT			
09/13/96 Copper, dissolved 1.3 0.03 NT NT DRY 03/19/97 Copper, dissolved 1.3 0.03 NT NT DRY 06/18/97 Copper, dissolved 1.3 0.03 NT NT DRY 03/10/98 Copper, dissolved 1.3 0.03 NT NT DRY 09/21/98 Copper, dissolved 1.3 0.03 NT NT DRY 03/18/99 Copper, dissolved 1.3 0.03 NT NT DRY 03/21/99 Copper, dissolved 1.3 0.03 NT NT DRY 03/21/2000 Copper, dissolved 1.3 0.03 NT NT DRY 06/28/2000 Copper, dissolved 1.3 0.03 NT NT DRY <0.03			1.3	0.03	NT	NT	NT			
03/19/97 Copper, dissolved 06/18/97 Copper, dissolved 1.3 0.03 NT NT NT NT 08/30/97 Copper, dissolved 1.3 0.03 NT NT NT 08/30/97 Copper, dissolved 1.3 0.03 NT NT 08/30/97 Copper, dissolved 1.3 0.03 NT NT 08/47 DRY 03/10/98 Copper, dissolved 1.3 0.03 NT NT 08/47 DRY 09/21/98 Copper, dissolved 1.3 0.03 NT NT 08/47 DRY 09/21/98 Copper, dissolved 1.3 0.03 NT NT 08/47 DRY 09/21/99 Copper, dissolved 1.3 0.03 NT NT 08/47 DRY 09/21/90 Copper, dissolved 1.3 0.03 NT NT 08/47 DRY 08/28/2000 Copper, dissolved 1.3 0.03 NT NT 08/47/2000 Copper, dissolved 1.3 0.03 NT NT 08/47/2001 Copper, dissolved 1.3 0.03 NT NT 08/47/2001 Copper, dissolved 1.3 0.03 NT NT 08/47/2001 Copper, dissolved 1.3 0.03 NT NT 08/47/2002 Copper, dissolved 1.3 0.03 NT 08/47/2003 Copper, dissolved 1.3 0.03 NT 08/47/2004 Copper, dissolved 1.3 0.03 NT 08/47/2005 Copper, dissolved 1.3 0.03 NT 08/47/2006 Copper, dissolved 1.3 0.03 NT 08/47/2006 Copper, dissolved 1.3 0.03 NT 08/47/2007 NT 08/47/2008 Copper, dissolved 1.3 0.03 NT 08/47/2008			1.3			NT	DRY			
06/18/97 Copper, dissolved 1.3 0.03 NT NT DRY 08/30/97 Copper, dissolved 1.3 0.03 NT NT DRY 03/10/98 Copper, dissolved 1.3 0.03 NT NT DRY 09/21/98 Copper, dissolved 1.3 0.03 NT NT DRY 09/21/99 Copper, dissolved 1.3 0.03 NT NT DRY 09/21/90 Copper, dissolved 1.3 0.03 NT NT DRY O.03 DRY <0.03			1.3	0.03	NT	NT	DRY			
08/30/97 Copper, dissolved 1.3 0.03 NT NT DRY 03/10/98 Copper, dissolved 1.3 0.03 NT NT DRY 09/21/98 Copper, dissolved 1.3 0.03 NT NT DRY 03/18/99 Copper, dissolved 1.3 0.03 NT NT DRY 09/21/98 Copper, dissolved 1.3 0.03 NT NT DRY 03/21/2000 Copper, dissolved 1.3 0.03 NT NT DRY 06/28/2000 Copper, dissolved 1.3 0.03 NT NT DRY 0.03 DRY <0.03			1.3	0.03		NT	NT			
03/10/98 Copper, dissolved 1.3 0.03 NT NT DRY 09/21/98 Copper, dissolved 1.3 0.03 NT NT DRY 03/18/99 Copper, dissolved 1.3 0.03 NT NT DRY 09/21/99 Copper, dissolved 1.3 0.03 NT NT DRY 03/21/2000 Copper, dissolved 1.3 0.03 NT NT DRY 06/28/2000 Copper, dissolved 1.3 0.03 NT NT DRY 0.03 09/28/2000 Copper, dissolved 1.3 0.03 NT NT DRY DRY 0.03 09/28/2000 Copper, dissolved 1.3 0.03 NT NT DRY DRY DRY 0.03 03/28/2001 Copper, dissolved 1.3 0.03 NT NT DRY O.03 DRY O.03 09/02/2001 Copper, dissolved 1.3 0.03 NT NT NT DRY DRY DRY 09/02/2002 Copper, dissolved 1.3 0.03										
09/21/98 Copper, dissolved 1.3 0.03 NT NT DRY 03/18/99 Copper, dissolved 1.3 0.03 NT NT DRY 09/21/99 Copper, dissolved 1.3 0.03 NT NT DRY 03/21/2000 Copper, dissolved 1.3 0.03 NT NT DRY 03/21/2000 Copper, dissolved 1.3 0.03 NT NT DRY 06/28/2000 Copper, dissolved 1.3 0.03 NT NT DRY 09/28/2000 Copper, dissolved 1.3 0.03 NT NT DRY DRY DRY 0.03 09/28/2000 Copper, dissolved 1.3 0.03 NT NT DRY DRY DRY 0.03 09/28/2000 Copper, dissolved 1.3 0.03 NT NT DRY DRY DRY 0.03 03/28/2001 Copper, dissolved 1.3 0.03 NT NT DRY 09/02/2001 Copper, dissolved 1.3 0.03 NT NT DRY 09/02/2001 Copper, dissolved 1.3 0.03 NT NT NT DRY DRY 09/02/2001 Copper, dissolved 1.3 0.03 NT NT NT NT DRY DRY 03/19/2002 Copper, dissolved 1.3 0.03 NT NT NT NT 0.005 NT 0.005 NT 03/14/2003 Copper, dissolved 1.3 0.03 NT NT NT DRY NT 0.007 NT 03/14/2003 Copper, dissolved 1.3 0.03 NT NT DRY NT 0.007 NT 09/29/2003 Copper, dissolved 1.3 0.03 NT NT DRY DRY DRY NT 0.007 NT 09/29/2003 Copper, dissolved 1.3 0.03 NT NT DRY DRY DRY NT 0.005 NT 09/27/2004 Copper, dissolved 1.3 0.03 NT NT DRY DRY DRY NT 0.005 NT 09/27/2004 Copper, dissolved 1.3 0.03 NT NT DRY DRY DRY NT 0.005 NT 09/27/2005 Copper, dissolved 1.3 0.03 NT NT DRY DRY DRY NT 0.005 NT 09/27/2005 Copper, dissolved 1.3 0.03 NT NT DRY DRY DRY NT 0.005 NT DRY/2005 Copper, dissolved 1.3 0.03 NT NT DRY DRY DRY NT 0.005 NT DRY/2005 Copper, dissolved 1.3 0.03 NT NT DRY DRY DRY NT 0.005 NT DRY/2006 Copper, dissolved 1.3 0.03 NT NT DRY DRY DRY NT 0.005 NT DRY/2006 Copper, dissolved 1.3 0.03 NT NT DRY DRY DRY NT 0.005 NT DRY/2006 Copper, dissolved 1.3 0.03 NT NT DRY DRY DRY DRY NT 0.005 NT DRY/2006 Copper, dissolved 1.3 0.03 NT NT DRY DRY DRY NT 0.005 NT DRY/2006 Copper, dissolved 1.3 0.03 NT NT DRY DRY DRY DRY NT 0.005 NT DRY/2006 Copper, dissolved 1.3 0.03 NT NT DRY DRY DRY NT 0.005 NT DRY/2006 Copper, dissolved 1.3 0.03 NT NT DRY DRY DRY NT 0.005 NT DRY/2006 Copper, dissolved 1.3 0.03 NT NT DRY DRY DRY NT 0.005 NT DRY/2006 Copper, dissolved 1.3 0.03 NT NT DRY DRY DRY NT 0.005 NT DRY/2006 Copper, dissolved 1.3 0.03 NT										
03/18/99 Copper, dissolved 1.3 0.03 NT NT DRY 09/21/99 Copper, dissolved 1.3 0.03 NT NT DRY 03/21/2000 Copper, dissolved 1.3 0.03 NT NT DRY 06/28/2000 Copper, dissolved 1.3 0.03 NT NT DRY 08/2000 Copper, dissolved 1.3 0.03 NT NT DRY 0.03 DRY 0.03 09/28/2000 Copper, dissolved 1.3 0.03 NT NT DRY DRY DRY 0.03 09/28/2000 Copper, dissolved 1.3 0.03 NT NT DRY DRY DRY 0.03 03/28/2001 Copper, dissolved 1.3 0.03 NT NT DRY 0.03 DRY 0.03 03/28/2001 Copper, dissolved 1.3 0.03 NT NT DRY 0.03 DRY DRY 09/02/2001 Copper, dissolved 1.3 0.03 NT NT NT DRY 0.03 DRY DRY 09/02/2001 Copper, dissolved 1.3 0.03 NT NT NT NT DRY DRY 03/19/2002 Copper, dissolved 1.3 0.03 NT NT NT NT DRY DRY 03/14/2003 Copper, dissolved 1.3 0.03 NT NT NT DRY NT 0.005 NT 03/14/2003 Copper, dissolved 1.3 0.03 NT NT DRY NT 0.007 NT 09/29/2003 Copper, dissolved 1.3 0.03 NT NT DRY DRY NT 0.007 NT 03/08/2004 Copper, dissolved 1.3 0.03 NT NT DRY DRY DRY NT 03/08/2004 Copper, dissolved 1.3 0.03 NT NT DRY DRY DRY NT 03/08/2004 Copper, dissolved 1.3 0.03 NT NT DRY DRY DRY NT 03/17/2005 Copper, dissolved 1.3 0.03 NT NT DRY DRY DRY NT 0.005 NT 09/22/2005 Copper, dissolved 1.3 0.03 NT NT DRY DRY DRY NT 0.005 NT 09/22/2005 Copper, dissolved 1.3 0.03 NT NT DRY DRY DRY NT 0.005 NT 09/22/2005 Copper, dissolved 1.3 0.03 NT NT DRY DRY DRY NT 0.005 NT 09/22/2005 Copper, dissolved 1.3 0.03 NT NT DRY DRY DRY NT 0.005 NT 09/22/2005 Copper, dissolved 1.3 0.03 NT NT DRY DRY DRY NT 0.005 NT 09/22/2005 Copper, dissolved 1.3 0.03 NT NT DRY DRY DRY NT 0.005 NT 09/22/2005 Copper, dissolved 1.3 0.03 NT NT DRY DRY DRY NT 0.005 NT DRY/2006 Copper, dissolved 1.3 0.03 NT NT DRY DRY DRY NT 0.005 NT DRY/2006 Copper, dissolved 1.3 0.03 NT NT DRY DRY DRY NT 0.005 NT DRY/2006 Copper, dissolved 1.3 0.03 NT NT DRY DRY DRY NT 0.005 NT DRY/2006 Copper, dissolved 1.3 0.03 NT NT DRY DRY DRY NT 0.005 NT DRY/2006 Copper, dissolved 1.3 0.03 NT NT DRY DRY DRY NT DRY/2006 Copper, dissolved 1.3 0.03 NT NT DRY DRY NT DRY DRY NT DRY/2006 Copper, dissolved 1.3 0.03 NT NT DRY DRY NT DRY/2006 Copper, dissolved 1										
09/21/99 Copper, dissolved 1.3 0.03 NT NT DRY 03/21/2000 Copper, dissolved 1.3 0.03 NT NT DRY 06/28/2000 Copper, dissolved 1.3 0.03 NT NT DRY <0.03										
03/21/2000 Copper, dissolved 1.3 0.03 NT NT DRY 06/28/2000 Copper, dissolved 1.3 0.03 NT NT DRY <0.03										
06/28/2000 Copper, dissolved 1.3 0.03 NT NT DRY <0.03										
09/28/2000 Copper, dissolved 1.3 0.03 NT NT DRY DRY DRY <0.03								< 0.03	DRY	< 0.03
12/27/2000 Copper, dissolved 1.3 0.03 NT NT NT Dry DRY <0.03										
03/28/2001 Copper, dissolved 1.3 0.03 NT NT DRY <0.03										
09/02/2001 Copper, dissolved 1.3 0.03 NT NT NT NT DRY 03/19/2002 Copper, dissolved 1.3 0.03 NT NT NT 0.005 NT <0.005										
03/19/2002 Copper, dissolved 1.3 0.03 NT NT 0.005 NT <0.005										
10/07/2002 Copper, dissolved 1.3 0.03 NT NT NT 0.037 <0.005										
03/14/2003 Copper, dissolved 1.3 0.03 NT NT DRY NT 0.007 NT 09/29/2003 Copper, dissolved 1.3 0.03 NT NT DRY DRY DRY NT 03/08/2004 Copper, dissolved 1.3 0.03 NT NT DRY NT 0.005 NT 09/27/2004 Copper, dissolved 1.3 0.03 NT NT DRY DRY DRY NT 09/22/2005 Copper, dissolved 1.3 0.03 NT NT DRY DRY DRY NT 03/17/2006 Copper, dissolved 1.3 0.03 NT NT DRY DRY DRY NT 03/17/2006 Copper, dissolved 1.3 0.03 NT NT DRY DRY DRY NT 03/17/2006 Copper, dissolved 1.3 0.03 NT NT DRY NT DRY NT										
09/29/2003 Copper, dissolved 1.3 0.03 NT NT DRY DRY DRY NT 03/08/2004 Copper, dissolved 1.3 0.03 NT NT DRY NT 0.005 NT 09/27/2004 Copper, dissolved 1.3 0.03 NT NT DRY DRY DRY NT 03/17/2005 Copper, dissolved 1.3 0.03 NT NT DRY NT 0.005 NT 09/22/2005 Copper, dissolved 1.3 0.03 NT NT DRY DRY DRY NT 03/17/2006 Copper, dissolved 1.3 0.03 NT NT DRY NT DRY NT 03/17/2006 Copper, dissolved 1.3 0.03 NT NT DRY NT DRY NT										
03/08/2004 Copper, dissolved 1.3 0.03 NT NT DRY NT 0.005 NT 09/27/2004 Copper, dissolved 1.3 0.03 NT NT DRY DRY DRY NT 03/17/2005 Copper, dissolved 1.3 0.03 NT NT DRY NT 0.005 NT 09/22/2005 Copper, dissolved 1.3 0.03 NT NT DRY DRY DRY NT 03/17/2006 Copper, dissolved 1.3 0.03 NT NT DRY NT DRY NT										
09/27/2004 Copper, dissolved 1.3 0.03 NT NT DRY DRY DRY NT 03/17/2005 Copper, dissolved 1.3 0.03 NT NT DRY NT 0.005 NT 09/22/2005 Copper, dissolved 1.3 0.03 NT NT DRY DRY DRY NT 03/17/2006 Copper, dissolved 1.3 0.03 NT NT DRY NT DRY NT										
03/17/2005 Copper, dissolved 1.3 0.03 NT NT DRY NT 0.005 NT 09/22/2005 Copper, dissolved 1.3 0.03 NT NT DRY DRY DRY NT 03/17/2006 Copper, dissolved 1.3 0.03 NT NT DRY NT DRY NT										
09/22/2005 Copper, dissolved 1.3 0.03 NT NT DRY DRY DRY NT 03/17/2006 Copper, dissolved 1.3 0.03 NT NT DRY NT DRY NT										
03/17/2006 Copper dissolved 1.3 0.03 NT NT DRY NT DRY NT										
CONDENSES COPPOR, CARROLL II.O C.OC II.										
	- 3									

ERR

ERR

0.021

0.005667

				SURFACE N	MONITORING	G PTS.			
		ACTION	2 STD						
DATE	PARAMETER	LEVEL	sw	SW 1	SW 2	SW 3	SW 4	SW 5	SW 6
	mg/L								
04/23/91	Iron, dissolved		0.231811	<0.114	<0.111	<0.03			
10/15/91	Iron, dissolved		0.231811	0.125	0.045	<0.03			
01/23/92	Iron, dissolved	**	0.231811	0.172	0.036	<0.03			
03/23/92	Iron, dissolved		0.231811	0.109	0.109	<0.03			
09/30/92	Iron, dissolved		0.231811	0.034	<0.03	DRY			
03/05/93	Iron, dissolved		0.231811	0.078	0.102	DRY			
09/21/93	Iron, dissolved		0.231811	< 0.03	<0.03	<0.03			
03/23/94	Iron, dissolved		0.231811	0.035	<0.03	<0.03			
09/16/94	Iron, dissolved		0.231811	<0.03	<0.03	NT			
03/16/95	Iron, dissolved		0.231811	0.05	<0.03	NT			
09/13/95	Iron, dissolved		0.231811	<0.03	NT	NT			
03/28/96	Iron, dissolved		0.231811	< 0.03	< 0.03	NT			
06/20/96	Iron, dissolved		0.231811	NT	NT	ΝT			
09/13/96	Iron, dissolved		0.231811	< 0.03	<0.03	DRY			
	Iron, dissolved		0.231811	< 0.03	<0.03	DRY			
06/18/97	Iron, dissolved		0.231811	NT	NT	NT			
	Iron, dissolved		0.231811	< 0.03	< 0.03	DRY			
	Iron, dissolved		0.231811	< 0.03	< 0.03	DRY			
	Iron, dissolved		0.231811	< 0.03	<0.03	DRY			
	Iron, dissolved		0.231811	< 0.03	<0.03	DRY			
	Iron, dissolved		0.231811	< 0.03	< 0.03	DRY			
	Iron, dissolved		0.231811	< 0.03	0.137	DRY			
	iron, dissolved		0.231811	NT	NT	DRY	< 0.03	DRY	2.2
	Iron, dissolved		0.231811	< 0.03	<0.03	DRY	DRY	DRY '	2.57
	Iron, dissolved		0.231811	NT	NT	NT	DRY	DRY	3.61
	Iron, dissolved		0.231811	0.085	0.073	DRY'	0.094	DRY	DRY
	Iron, dissolved		0.231811	0.257	0.042	DRY	NT	DRY	DRY
	Iron, dissolved		0.231811	< 0.03	< 0.03	DRY	< 0.03	DRY	4.17
10/07/2002	Iron, dissolved		0.231811	< 0.03	< 0.03	DRY	< 0.03	<0.03	3.69
	Iron, dissolved		0.231811	0.162	0.117	DRY	0.108	0.051	4.42
	Iron, dissolved		0.231811	< 0.030	< 0.030	DRY	DRY	DRY	4.09
	Iron, dissolved		0.231811	0.038	< 0.030	DRY	0.032	< 0.03	4.07
	Iron, dissolved		0.231811	<0.030	0.036	DRY	DRY	DRY	4.67
	Iron, dissolved		0.231811	0.052	0.048	DRY	0.032	< 0.03	4.96
	Iron, dissolved		0.231811	<0.030	< 0.030	DRY	DRY	DRY	5.08
	Iron, dissolved		0.231811	< 0.030	< 0.030	DRY	< 0.030	DRY	3.66
	Iron, dissolved		0.231811	<0.030	< 0.030	DRY	DRY	DRY	5.77

MONITORING WELL SAMPLING RESULTS

			MEAN +	SURFACE N	MONITORIN	G PTS.			
		ACTION	2 STD						
DATE	PARAMETER	LEVEL	SW	SW 1	SW 2	SW 3	SW 4	SW 5	SW 6
	mg/L	0.045				-0.005			
	Lead, dissolved	0.015		<0.005	<0.005	<0.005			
	Lead, dissolved	0.015	0.007	0.007	0.01				
	Lead, dissolved	0.015		<0.005	<0.005	<0.005			
	Lead, dissolved	0.015		<0.005	<0.005	<0.005			
	Lead, dissolved	0.015	0.007	NT	NT	NT			
	Lead, dissolved	0.015	0.007	NT	NT	NT			
	Lead, dissolved	0.015	0.007	NT	NT	NT			
	Lead, dissolved	0.015	0.007	NT	NT	NT			
	Lead, dissolved	0.015	0.007	NT	NT	NT			
	Lead, dissolved	0.015	0.007	NT	NT	NT			
	Lead, dissolved	0.015	0.007	NT	NT	NT			
	Lead, dissolved	0.015	0.007	NT	NT	NT			
	Lead, dissolved	0.015	0.007	NT	NT	NT			
	Lead, dissolved	0.015	0.007	NT	NT	DRY			
	Lead, dissolved	0.015	0.007	NT	NT	DRY			
	Lead, dissolved	0.015	0.007	NT	NT	NT			
	Lead, dissolved	0.015	0.007		NT	DRY			
	Lead, dissolved	0.015	0.007		NT	DRY			
	Lead, dissolved	0.015	0.007	NT	NT,	DRY			
	Lead, dissolved	0.015	0.007	NT	NT	DRY			
	Lead, dissolved	0.015	0.007	NT	NT	DRY			
	Lead, dissolved	0.015	0.007	NT	NT	DRY			
	Lead, dissolved	0.015	0.007		NT	DRY	<0.005	DRY	<0.005
	Lead, dissolved	0.015	0.007	NT	NT	DRY	DRY	DRY	<0.005
	Lead, dissolved	0.015	0.007	NT	NT	NT	DRY	DRY	<0.005
	Lead, dissolved	0.015	0.007		NT	DRY	<0.005	DRY	DRY
	Lead, dissolved	0.015	0.007	NT	NT	NT	NT	DRY	DRY
	Lead, dissolved	0.015	0.007	NT	NT	NT	<0.005	NT	<0.005
	Lead, dissolved	0.015	0.007		NT	NT	<0.005	<0.005	NT
	Lead, dissolved	0.015	0.007		NT	DRY	NT	<0.005	NT
	Lead, dissolved	0.015	0.007	NT	NT	DRY	DRY	Dry	NT
	Lead, dissolved	0.015	0.007	NT	NT	DRY	NT	<0.005	NT
	Lead, dissolved	0.015	0.007		NT	DRY	DRY	DRY	NT
	Lead, dissolved	0.015	0.007		NT	DRY	NT	<0.005	NT
	Lead, dissolved	0.015	0.007		NT	DRY	DRY	DRY	NT
	Lead, dissolved Lead, dissolved	0.015	0.007		NT	DRY	NT	DRY	NT
		0.015	0.007	NT	NT	DRY	DRY	DRY	NT

0.007

0.01

MONITORING WELL SAMPLING RESULTS

		ACTION	MEAN + S		MONITORIN				
DATE	PARAMETER	LEVEL	sw	SW 1	SW 2	SW 3	SW 4	SW 5	SWE
	mg/L					<u> </u>			
04/23/91	Magnesium, dissolved		32.97694	30.6	31.3	57			
10/15/91	Magnesium, dissolved		32.97694	24.4	24.7	57.8			
01/23/92	Magnesium, dissolved		32.97694	22.5	22.5	63.3			
03/23/92	Magnesium, dissolved		32.97694	28.6	28.1	62.2			
09/30/92	Magnesium, dissolved		32.97694	NT	NT	NT			
03/05/93	Magnesium, dissolved		32.97694	NT	, NT	NT			
09/21/93	Magnesium, dissolved		32.97694	NT	NT	NT			
03/23/94	Magnesium, dissolved		32.97694	NT	NT	NT			
09/16/94	Magnesium, dissolved		32.97694	NT	NT	NT			
03/16/95	Magnesium, dissolved		32.97694	NT	NT	NT			
09/13/95	Magnesium, dissolved		32.97694	NT	NT	NT			
03/28/96	Magnesium, dissolved		32.97694	NT	NT	NT			
06/20/96	Magnesium, dissolved		32.97694	NT	NT	NT			
09/13/96	Magnesium, dissolved		32.97694	NT	NT	DRY			
03/19/97	Magnesium, dissolved		32.97694	NT	NT	DRY			
06/18/97	Magnesium, dissolved		32.97694	NT	NT	NT			
08/30/97	Magnesium, dissolved		32.97694	NT	NT	DRY			
03/10/98	Magnesium, dissolved		32.97694	NT	NT	DRY			
09/21/98	Magnesium, dissolved		32.97694	NT	NT	DRY			
03/18/99	Magnesium, dissolved		32.97694	NT	NT	DRY			
09/21/99	Magnesium, dissolved		32.97694	NT	NT	DRY			
03/21/2000	Magnesium, dissolved		32.97694	NT	NT	DRY			
06/28/2000	Magnesium, dissolved		32.97694	NT	NT	DRY	48.3	DRY	64
09/28/2000	Magnesium, dissolved		32.97694	NT	NT	DRY	DRY	DRY	67.5
12/27/2000	Magnesium, dissolved	••	32.97694	NT	NT	NT	DRY	DRY	65.7
03/28/2001	Magnesium, dissolved		32.97694	NT	NT	DRY	8.2	DRY	DRY
09/02/2001	Magnesium, dissolved		32.97694	NT	NT	NT	NT	DRY	DRY
03/19/2002	Magnesium, dissolved		32.97694	NT	NT	NT	13.2	NT	62.6
10/07/2002	Magnesium, dissolved		32.97694	NT	NT	NT	105	25.3	NT
03/14/2003	Magnesium, dissolved		32.97694	NT	NT	DRY	NT	12	NT
09/29/2003	Magnesium, dissolved		32.97694	NT	NT	DRY	DRY	DRY	NT
03/08/2004	Magnesium, dissolved		32.97694	NT	NT	DRY	NT	24.6	NT
09/27/2004	Magnesium, dissolved		32.97694	NT	NT	DRY	DRY	DRY	NT
03/17/2005	Magnesium, dissolved		32.97694	NT	NT	DRY	NT	24.6	NT
	Magnesium, dissolved		32.97694	NT	NT	DRY	DRY	DRY	NT
	Magnesium, dissolved		32.97694	NT	NT	DRY	NT	DRY	NT
	Magnesium, dissolved		32.97694	NT	NT	DRY	DRY	DRY	NT

Mean Standard Deviation (STD) Mean + 2 STD
 26.525
 26.65
 60.075
 43.675
 21.625
 64.95

 3.225969
 3.344772
 2.717881
 38.63078
 5.56434
 1.836437

 32.97694
 33.33954
 65.51076
 120.9366
 32.75368
 68.62287

				SURFACE	MONITORIN	G PTS.			
DATE	DADAMETER	ACTION	2 STD	0144	OWC	CIALO	CIAL A		0144
DATE	PARAMETER mg/L	LEVEL	sw	SW 1	SW 2	SW 3	SW 4	Sw 5	SW 6
04/23/91	Mercury, dissolved	0.002	0.0005	<0.001	<0.001	<0.001			
	Mercury, dissolved	0.002		<0.0005	<0.0005	<0.0005			
	Mercury, dissolved	0.002		<0.0005	<0.0005	<0.0005			
03/23/92	Mercury, dissolved	0.002		<0.0005	<0.0005	<0.0005			
09/30/92	Mercury, dissolved	0.002	0.0005	NT	NT	NT			
03/05/93	Mercury, dissolved	0.002	0.0005	NT	NT	NT			
	Mercury, dissolved	0.002	0.0005	NT	NT	NT			
	Mercury, dissolved	0.002	0.0005	NT	NT	NT			
	Mercury, dissolved	0.002	0.0005	NT	NT	·NT			
	Mercury, dissolved	0.002	0.0005	NT	NT	NT			
09/13/95	Mercury, dissolved	0.002	0.0005	NT	NT	NT			
03/28/96	Mercury, dissolved	0.002	0.0005	NT	NT	NT			
06/20/96	Mercury, dissolved	0.002	0.0005	NT	NT	NT			
09/13/96	Mercury, dissolved	0.002	0.0005	NT	NT	DRY			
03/19/97	Mercury, dissolved	0.002	0.0005	NT	NT	DRY			
06/18/97	Mercury, dissolved	0.002	0.0005	NT	NT	NT			
08/30/97	Mercury, dissolved	0.002	0.0005	NT	NT	DRY			
03/10/98	Mercury, dissolved	0.002	0.0005	NT	NT	DRY			
09/21/98	Mercury, dissolved	0.002	0.0005	NT	NT	DRY			
03/18/99	Mercury, dissolved	0.002	0.0005	NT	NT	DRY			
09/21/99	Mercury, dissolved	0.002	0.0005	NT	NT	DRY			
	Mercury, dissolved	0.002	0.0005	NT	NT	DRY			
	Mercury, dissolved	0.002	0.0005	NT	NT	DRY	<0.0005	DRY	<0.0005
	Mercury, dissolved	0.002	0.0005	NT	NT	DRY	DRY	DRY	<0.0005
	Mercury, dissolved	0.002	0.0005	NT	NT	NT	DRY	DRY	<0.0005
	Mercury, dissolved	0.002	0.0005	NT	NT	Dry	<0.0005	DRY	DRY
	Mercury, dissolved	0.002	0.0005	NT	NT	NT	NT	DRY	DRY
03/19/2002	Mercury, dissolved	0.002	0.0005	NT	NT	NT	<0.0005	NT	<0.0005
10/07/2002	Mercury, dissolved	0.002	0.0005	NT	NT	NT	<0.0005	<0.0005	NT
03/14/2003	Mercury, dissolved	0.002	0.0005	NT	NT	DRY	NT	<0.005	NT
	Mercury, dissolved	0.002	0.0005	NT	NT	DRY	DRY	DRY	NT
	Mercury, dissolved	0.002	0.0005	NT	NT	DRY	NT	<0.0005	NT
	Mercury, dissolved	0.002	0.0005	NT	NT	DRY	DRY	DRY	NT
03/17/2005	Mercury, dissolved	0.002	0.0005	NT	NT	DRY	NT	<0.0005	NT
	Mercury, dissolved	0.002	0.0005	NT	NT	DRY	DRY	DRY	NT
	Mercury, dissolved	0.002	0.0005	NT	NT	DRY	NT	DRY	NT
09/22/2006	Mercury, dissolved	0.002	0.0005	NT	NT	DRY	DRY	DRY	NT
	Mean			ERR	ERR	ERR	ERR	ERR	ERR
	Standard Deviation (STD)			ERR			ERR	ERR	ERR
	Mean + 2 STD			ERR	R ERR	ERR	ERR	ERR	ERR

			MEAN +	SURFACE N	MONITORIN	G PTS.			
		ACTION	2 STD					_	
DATE	PARAMETER	LEVEL	sw	SW 1	SW 2	SW 3	SW 4	SW 5	SW 6
	mg/L								
04/23/91	Nitrogen, Ammonia		1	<0.5	<0.5	<0.5			
10/15/91	Nitrogen, Ammonia		1	<0.5	<0.5	<0.5			
01/23/92	Nitrogen, Ammonia		1	<1.0	<1.0	<1.0			
03/23/92	Nitrogen, Ammonia		1	<1.0	<1.0	<1.0			
09/30/92	Nitrogen, Ammonia		1	<1	<1	DRY			
03/05/93	Nitrogen, Ammonia		1	<1	<1	DRY			
09/21/93	Nitrogen, Ammonia	••	1	<1	<1	<1			
03/23/94	Nitrogen, Ammonia		1	<1	<1	<1			
	Nitrogen, Ammonia		1	<1	<1	NT			
03/16/95	Nitrogen, Ammonia		1	<1	NT	NT			
	Nitrogen, Ammonia		1	<1	<1	NT			
03/28/96	Nitrogen, Ammonia		1	<1	<1	NT			
06/20/96	Nitrogen, Ammonia		1	NT	NT	NT			
09/13/96	Nitrogen, Ammonia		1	<1	<1	DRY			
	Nitrogen, Ammonia		1	<1	<1	DRY			
06/18/97	Nitrogen, Ammonia		1	NT	NT	NT			
	Nitrogen, Ammonia		1	<1	<1	DRY			
03/10/98	Nitrogen, Ammonia		1	<1	<1	DRY			
	Nitrogen, Ammonia		1	<1	<1	DRY			
03/18/99	Nitrogen, Ammonia		1	<1	<1	DRY			
	Nitrogen, Ammonia		1	<1	<1	DRY			
	Nitrogen, Ammonia		1	<1	<1	DRY			
	Nitrogen, Ammonia		1	NT	NT	DRY	<1	DRY	<1
	Nitrogen, Ammonia		1	<1	<1	DRY	DRY	DRY	<1
	Nitrogen, Ammonia		1	NT	NT	NT	DRY	DRY	<1
03/28/2001	Nitrogen, Ammonia		1	<1	<1	DRY	<1	DRY	DRY
	Nitrogen, Ammonia		1	<1	<1	DRY	NT	DRY	DRY
	Nitrogen, Ammonia		1	<1	<1	DRY	<1	DRY	<1
10/07/2002	Nitrogen, Ammonia	-	1	<1	<1	DRY	1600	<1	1.3
	Nitrogen, Ammonia		1	<1	<1	DRY	164	44.8	<1
	Nitrogen, Ammonia		1	<1.0	<1.0	DRY	DRY	DRY	<1.0
	Nitrogen, Ammonia	_	. 1	<1.0	<1.0	DRY	151	1.7	1.1
	Nitrogen, Ammonia		1	<1.0	<1.0	DRY	DRY	DRY	1
	Nitrogen, Ammonia		1	<1.0	<1.0	DRY	151	1.7	<1.0
	Nitrogen, Ammonia		1	<1.0	<1.0	DRY	DRY	DRY	1
	Nitrogen, Ammonia	_	1	<1.0	<1.0	DRY	<1.0	DRY	<1.0
	Nitrogen, Ammonia		1	<1.0	<1.0	DRY	DRY	DRY	<1.0

MONITORING WELL SAMPLING RESULTS

1		ACTION	MEAN + S	SURFACE N					
DATE	PARAMETER	LEVEL	SW	SW 1	SW 2	SW 3	Sw 4	SW 5	Sw 6
04/23/91	pH		9.001966	7.76	7.77	7.73			
10/15/91			9.001966	7.74	8.08	7.80			
01/23/92	pH		9.001966	7.89	8.41	7.72			
03/23/92	pH		9.001966	8.60	8.54	7.45			
09/30/92	pH		9.001966	7.95	8	7.45			
03/05/93	pH		9.001966	8.11	8.11	DRY			
09/21/93	pH		9.001966	8.12	8.07	7.34			
03/23/94	pH		9.001966	8.01	7.83	7.39			
09/16/94	pH		9.001966	7.39	7.11	7.39			
03/16/95	pH		9.001966	8	8.2	DRY			
09/13/95	pH		9.001966	7.7	DRY	DRY			
03/28/96	pH		9.001966	8.2	8.3	Dry			
06/20/96	pH		9.001966	NT	NT	NT			
09/13/96	pH		9.001966	7.8	7.6	DRY			
03/19/97	pH		9.001966	7.4	7.6	DRY			
06/18/97	pH		9.001966	NT	NT	NT			
08/30/97	pH		9.001966	7.8	7.6	DRY			
03/10/98			9.001966	6.1	6.1	DRY			
09/21/98	pH		9.001966	6.4	5.7	DRY			
03/18/99	pH		9.001966	7	7.3	DRY			
09/21/99	pH		9.001966	6.4	5.7	DRY			
03/21/2000	pH		9.001966	ΝT	NT	DRY			
06/28/2000	pH		9.001966	NT	NT	DRY	6.4	DRY	5.5
09/28/2000	pH		9.001966	NT	NT	DRY	NT	NT	NT
12/27/2000	pH		9.001966	NT	NT	NT	DRY	DRY	7.7
03/28/2001	pΗ	. 	9.001966	6.9	8.3	DRY	8.6	DRY	DRY
09/02/2001	pH		9.001966	7. 9	8	DRY	NT	DRY	DRY
03/19/2002			9.001966	7.9	7.9	DRY	8.4	DRY	6.8
10/07/2002	pH		9.001966	6.9	8.6	DRY	7.2	7.2	7
03/14/2003	pН		9.001966	7.8	7.6	DRY	7.2	7.3	7.1
09/29/2003			9.001966	7.4	7.3	DRY	DRY	DRY	7.2
03/08/2004			9.001966	6.2	7.4	DRY	6.9	7.5	7.8
09/27/2004			9.001966	9.4	8.4	DRY	DRY	DRY	7
03/17/2005			9.001966	7.3	7.8	DRY	6.9	7.5	7.2
09/22/2005			9.001966	8.1	8	DRY	DRY	DRY	7
03/17/2006			9.001966	7.2	7.1	DRY	7.7	DRY	7.7
09/22/2006	pH		9.001966	8.1	8.1	DRY	DRY	DRY	8.2

Mean Standard Deviation (STD) Mean + 2 STD Mean - 2 STD
 7.595806
 7.684
 7.53375
 7.4125
 7.375
 7.183333

 0.70308
 0.733515
 0.172115
 0.716655
 0.129904
 0.64786

 9.001966
 9.15103
 7.877979
 8.845809
 7.634808
 8.479053

 6.189647

				SURFACE M	ONITORING	PTS.			
		ACTION	2 STD						
DATE	PARAMETER	LEVEL	sw	SW 1	SW 2	SW 3	SW 4	SW 5	SW 6
- 1100 in . Til	mg/L				.0.400	.0.400			
04/23/91 Phenois			0.1	<0.100	<0.100	<0.100			
10/15/91 Phenols			0.1	<0.100	<0.100	<0.100			
01/23/92 Phenols			0.1	<0.100	<0.100	<0.100			
03/23/92 Phenols			0.1	<0.100	<0.100	<0.100			
09/30/92 Phenois		-	0.1	<0.100	<0.100	DRY			
03/05/93 Phenols			0.1	NT	NT	NT			
09/21/93 Phenols			0.1	<0.100	<0.100	<0.100			
03/23/94 Phenols			0.1	NT	NT	NT			
09/16/94 Phenols			0.1	<0.100	<0.100	NT			
03/16/95 Phenols			0.1	<0.100	NT	NT			
09/13/95 Phenols		-	0.1	NT	NT	NT			
03/28/96 Phenois			0.1	NT	NT	NT			
06/20/96 Phenois			0.1	NT	NT	NT			
09/13/96 Phenols			0.1	< 0.100	<0.100	DRY			
03/19/97 Phenois			0.1	NT	NT	NT			
06/18/97 Phenois			0.1	NT	NT	NT			
08/30/97 Phenols			0.1	<0.100	<0.100	DRY			
03/10/98 Phenols			0.1	NT	NT	NT			
09/21/98 Phenols			0.1	<0.100	<0.100	DRY			
03/18/99 Phenols			0.1	NT	NT	DRY			
09/21/99 Phenois			0.1	<0.100	<0.100	DRY			
03/21/2000 Phenois			0.1	NT	NT	DRY			
06/28/2000 Phenois			0.1	NT	NT	DRY	NT	NT	NT
09/28/2000 Phenols			0.1	<0.100	<0.100	DRY	DRY	DRY	< 0.100
12/27/2000 Phenois			0.1	NT	NT	NT	DRY	DRY	NT
03/28/2001 Phenois			0.1	NT	NT	NT	NT	DRY	Dry
09/02/2001 Phenols			0.1	<0.100	<0.100	DRY	NT	DRY	Dry
03/19/2002 Phenois			0.1	NT	NT	NT	NT	NT	ΝŤ
10/07/2002 Phenois			0.1	<0.100	<0.100	DRY	<0.100	<0.100	< 0.100
03/14/2003 Phenois		••	0.1	NT	NT	DRY	NT	NT	NT
09/29/2003 Phenois			0.1	<0.100	<0.100	DRY	DRY	DRY	<0.100
03/08/2004 Phenols			NT	NT	NT	DRY	NT	NT	NT
09/27/2004 Phenois			0.1	<0.100	<0.100	DRY	DRY	DRY	< 0.100
03/17/2005 Phenois			NT	NT	NT	DRY	NT	NT	NT
09/22/2005 Phenols			0.1	< 0.100	< 0.100	DRY	DRY	DRY	<0.100
03/17/2006 Phenois			NT	NT	NT	DRY	NT	DRY	NT
09/22/2006 Phenols			0.1	<0.100	<0.100	DRY	DRY	DRY	<0.100
Mean				ERR	ERR	ERR	ERR	ERR	EF
	Deviation (STD)			ERR	ERR	ERR	ERR	ERR	EF
Mean + 2	STD			ERR	ERR	ERR	ERR	ERR	EF

MONITORING WELL SAMPLING RESULTS

			MEAN + SURFACE MONITORING PTS.							
_		ACTION	2 STD							
DATE	PARAMETER	LEVEL	SW	SW 1	SW 2	SW 3	SW 4	SW 5	SW 6	
04/22/04	Temperature, celsius		24.70774	12.8	12.9	13.1				
	Temperature, celsius		24.70774	7.7	9.8	14.7				
	Temperature, celsius		24.70774	0.9	0.9	3.5				
	Temperature, celsius		24.70774	4.1	4.6	5.5				
	Temperature, celsius		24.70774	2.9	3	7.1				
			24.70774	2.9	2.9	DRY				
	Temperature, celsius		24.70774	13.3	12.9	15.2				
	Temperature, celsius		24.70774		15.4	11.8				
	Temperature, celsius			17.5						
	Temperature, celsius		24.70774	21.2	23.8	11.8				
	Temperature, celsius		24.70774		227	DRY				
	Temperature, celsius		24.70774	4.28	DRY	DRY				
	Temperature, celsius		24.70774	10	11	DRY				
	Temperature, celsius		24.70774	NT	NT	NT				
	Temperature, celsius		24.70774	18	18	Dry				
	Temperature, celsius		24.70774	4	4	DRY				
	Temperature, celsius		24.70774	NT	NT	NT				
08/30/97	Temperature, celsius		24.70774	23	23	DRY				
	Temperature, celsius		24.70774	5	2	DRY				
09/21/98	Temperature, celsius		24.70774	17	17	DRY				
03/18/99	Temperature, celsius		24.70774	8	9	DRY				
09/21/99	Temperature, celsius		24.70774	17	17	DRY				
03/21/2000	Temperature, celsius		24.70774	NT	NT	DRY				
06/28/2000	Temperature, celsius		24.70774	NT	NT	DRY	29	DRY	20	
09/28/2000	Temperature, celsius		24.70774	NT	NT	DRY	NT	NT	NT	
12/27/2000	Temperature, celsius		24.70774	NT	NT	NT	DRY	DRY	13	
	Temperature, celsius		24.70774	4	4	DRY	2	DRY	Dry	
	Temperature, celsius		24.70774	16	16	DRY	NT	DRY	Dry	
	Temperature, celsius		24.70774	4	4	DRY	9	DRY	15	
	Temperature, celsius		24.70774	16	15	DRY	18	17	18	
	Temperature, celsius		24.70774	7	8	DRY	2	5	14	
	Temperature, celsius		24.70774	18	18	DRY	DRY	DRY	18	
	Temperature, celsius		24.70774	5	5	DRY	5	4	15	
	Temperature, celsius		24,70774	22	21	DRY	DRY	DRY	21	
	Temperature, celsius		24.70774	10	11	DRY	5	4	14	
	Temperature, celsius		24.70774	19	19	DRY	DRY	DRY	21	
	Temperature, celsius		24.70774	8	7	DRY	9	DRY	13	
	Temperature, celsius		24.70774	19	18	DRY	DRY	DRY	17	
3312212000	i ciriperature, celsius		27.10114	19	10	DIVI	DIVI	DIVI	17	

Mean Standard Deviation (STD) Mean + 2 STD
 11.25267
 11.48966
 10.3375
 9.875
 7.5
 16.58333

 6.727538
 6.742779
 4.111246
 8.695365
 5.5
 2.871072

 24.70774
 24.97521
 18.55999
 27.26573
 18.5
 22.32548

MONITORING WELL SAMPLING RESULTS

		MEAN + SURFACE MONITORING PTS.								
		ACTION	2 STD	0144	0147.0	0144.0	0)4/4	0144.5	014	
DATE	PARAMETER	LEVEL	SW	SW 1	SW 2	SW 3	SW 4	SW 5	SW	
	mg/L		0.050.400	0.004	0.000	0.004				
	Total Organic Halogens		0.259469	0.031	0.066	0.031				
	Total Organic Halogens		0.259469	0.015	<0.01	<0.01				
	Total Organic Halogens		0.259469	<0.01	<0.01	<0.01				
	Total Organic Halogens		0.259469	<0.01	0.02	0.04				
	Total Organic Halogens	-	0.259469	0.02	0.02	DRY				
	Total Organic Halogens		0.259469	NT	NT	NT				
	Total Organic Halogens		0.259469	0.02	0.03	0.02				
	Total Organic Halogens		0.259469	NT	NT	NT				
	Total Organic Halogens		0.259469	0.02	0.03	NT				
	Total Organic Halogens	-	0.259469	0.03	NT	NT				
	Total Organic Halogens		0.259469	NT	NT	NT				
	Total Organic Halogens		0.259469	NT	NT	NT				
	Total Organic Halogens		0.259469	NT	NT	NT				
	Total Organic Halogens		0.259469	0.12	0.03	DRY				
	Total Organic Halogens		0.259469	NT	NT	NT				
	Total Organic Halogens		0.259469	NT	NT	NT				
	Total Organic Halogens	-	0.259469	0.11	0.02	DRY				
	Total Organic Halogens		0.259469	NT	NT	NT				
	Total Organic Halogens		0.259469	0.33	0.08	DRY		•		
	Total Organic Halogens		0.259469	NT	NT	DRY				
	Total Organic Halogens		0.259469	0.02	0.01	DRY				
	Total Organic Halogens		0.259469	NT	NT	DRY	NE	551		
	Total Organic Halogens		0.259469	NT	NT 2.07	DRY	NT	DRY	NT	
	Total Organic Halogens	-	0.259469	0.2	0.07	DRY	DRY	DRY	0.03	
	Total Organic Halogens		0.259469	NT	NT	NT	DRY	DRY	NT	
	Total Organic Halogens		0.259469	NT	NT	NT	NT	DRY	Dry	
	Total Organic Halogens		0.259469	0.058	0.052	DRY	NT	DRY	Dry	
	Total Organic Halogens		0.259469	NT	NT	NT	NT	NT 40.04	NT	
	Total Organic Halogens		0.259469	0.114	0.059	DRY	0.119	<0.01	0.104	
	Total Organic Halogens		0.259469	NT	NT	DRY	NT	NT	NT	
	Total Organic Halogens	-	0.259469	0.198	0.119 NT	DRY	Dry	Dry	0.014	
	Total Organic Halogens		0.259469	NT 0.046		DRY	NT	NT	NT	
	Total Organic Halogens		0.259469	0.046	0.044	DRY	DRY	DRY	0.04	
	Total Organic Halogens		0.259469	NT	NT	DRY	NT	NT	NT	
	Total Organic Halogens		0.259469	0.044	0.042	DRY	DRY	DRY	0.088	
	Total Organic Halogens		0.259469	NT	NT 0.031	DRY	NT	DRY	NT	
09/22/2006	Total Organic Halogens	••	0.259469	<0.100	0.031	DRY	DRY	DRY	0.062	

Mean Standard Deviation (STD) Mean + 2 STD
 0.086
 0.045188
 0.030333
 0.11

 0.086735
 0.027377
 0.008179
 0.259469
 0.099942
 0.04669
 0.11

0.119 ERR 0.056333 0 ERR 0.031779 0.119 ERR 0.119891

			MEAN +	SURFACE N	ONITORING	PTS.		·· -··· -	
		ACTION	2 STD						
DATE	PARAMETER	LEVEL	sw	SW 1	SW 2	SW 3	SW 4	SW 5	SW 6
	ug/L								
04/23/91	Trichloroethene *	5	1	<1	<1	<1			
10/15/91 7	Trichloroethene *	5	1	<1	<1	<1			
01/23/92	Trichloroethene *	5	1	<1	<1	<1			
03/23/92	Trichloroethene *	5	1	<1	<1	<1			
09/30/92 1	Trichloroethene *	5	1	NT	NT	NT			
03/05/93 1	Trichloroethene *	5	1	NT	NT	NT			
09/21/93 1	Trichloroethene *	5	1	NT	NT	NT			
03/23/94 1	Trichloroethene *	5	1	NT	NT	NT			
	Trichloroethene *	5	1	NT	NT	NT			
	Trichloroethene *	5	1	NT	NT	NT			
	Trichloroethene *	5	1	NT	NT	NT			
	Trichloroethene *	5	i i	NT	NT	NT			
	Trichloroethene *	5	1	NT	NT	NT			
	Frichloroethene *	5	i	NT	NT	DRY			
	Trichloroethene *	5	i	NT	NT	NT			
	Trichloroethene *	5	i	NT	NT	NT			
	Trichloroethene *	5	i	NT	NT	DRY			
	Trichloroethene *	5	i	NT	NT	DRY			•
	Frichloroethene *	5	i	NT	NT	DRY			
	Trichloroethene *	5	1	NT.	NT	DRY			
	Trichloroethene *	5	1	NT	NT	DRY			
	Trichloroethene *	5	1	NT	NT	DRY			
	Trichloroethene *	5	1	NT	NT	DRY	<1	DRY	<1
	Trichloroethene *	5	1	NT	NT	DRY	DRY	DRY	<1
		5	1	NT	NT	NT	DRY	DRY	
	Trichloroethene *	5	•	NT NT	NT	DRY	<1		<1 D=:
	Frichloroethene *	-	1			NT	•	DRY	Dry
	Trichloroethene *	5	1	NT	NT		NT	DRY	Dry
	Trichloroethene *	5	1	NT	NT	NT	<1	NT	<1
	Frichloroethene *	5	1	NT	NT	NT	<1 \	<1	NT
	Trichloroethene *	5	1	NT	NT	DRY	NT	<1	NT
	Trichloroethene *	5	1	NT	NT	DRY	DRY	DRY	NT
	Trichloroethene *	5	1	NT	NT	DRY	NT	<1	NT
	Trichloroethene *	5	1	NT	NT	DRY	DRY	DRY	NT
	Trichloroethene *	5	1	NT	NT	DRY	NT	<1	NT
	Trichloroethene *	5	1	NT	NT	DRY	DRY	DRY	NT
	Trichloroethene *	5	1	NT	NT	DRY	NT	DRY	NT
09/22/2006 1	Trichloroethene *	5	1	NT	NT	DRY	DRY	DRY	NT
	Mean			ERR	ERR	ERR	ERR	ERR	ERR
	Standard Deviation (STD)			ERR	ERR	ERR	ERR	ERR	ERR
N	Mean + 2 STD			ERR	ERR	ERR	ERR	ERR	ERR

				SURFACE N	ONITORING	G PTS.			
		ACTION	2 STD			0144.0	0144.4	0	
DATE	PARAMETER	LEVEL	SW	SW 1	SW 2	SW 3	SW 4	SW 5	SW 6
	mg/L	_			-0.00	-0.00			
	Zinc, dissolved	2	0.03	<0.03	<0.03	< 0.03			
	Zinc, dissolved	2	0.03	<0.03	<0.03	< 0.03			
	Zinc, dissolved	2	0.03	<0.03	<0.03	< 0.03			
	Zinc, dissolved	2	0.03	<0.03	<0.03	<0.03			
	Zinc, dissolved	2 2	0.03	NT	NT	NT			
	Zinc, dissolved	2	0.03	NT	NT	NT			
	Zinc, dissolved	2	0.03	NT	NT	NT			
	Zinc, dissolved	2	0.03	NT	NT	NT			
	Zinc, dissolved	2 2	0.03	NT	NT	NT			
	Zinc, dissolved	2	0.03	NT	NT	NT			
	Zinc, dissolved	2	0.03	NT	NT	NT			
	Zinc, dissolved	2	0.03	NT	NT	NT			
	Zinc, dissolved	2	0.03	NT	NT	NT			
	Zinc, dissolved	2 2 2	0.03	NT	NT	DRY			
	Zinc, dissolved	2	0.03	NT	NT	DRY			
	Zinc, dissolved	2	0.03	NT	NT	NT			
	Zinc, dissolved	2	0.03	NT	NT	DRY			
	Zinc, dissolved	2	0.03	NT	NT	DRY			
	Zinc, dissolved	2	0.03	NT	NT	DRY			
03/18/99	Zinc, dissolved	2	0.03	NТ	NT	DRY			
	Zinc, dissolved	2	0.03	NT	NT	DRY			
03/21/2000	Zinc, dissolved	2 2	0.03	NT	NT	DRY			
06/28/2000	Zinc, dissolved	2	0.03	NT	NT	DRY	0.108	DRY	<0.03
09/28/2000	Zinc, dissolved	2	0.03	NT	NT	DRY	DRY	DRY	<0.03
12/27/2000	Zinc, dissolved	2	0.03	ŇT	NT	NT	DRY	Dry	<0.03
03/28/2001	Zinc, dissolved	2	0.03	NT	NT	DRY	0.047	Dry	Dry
09/02/2001	Zinc, dissolved	2	0.03	NΤ	NT	NT	NT	Dry	Dry
03/19/2002	Zinc, dissolved	2	0.03	NT	NT	NT	0.023	NT	<0.01
	Zinc, dissolved	2	0.03	NT	NT	NT	0.028	0.018	NT
03/14/2003	Zinc, dissolved	2	0.03	NT	NT	DRY	NT	0.023	NT
09/29/2003	Zinc, dissolved	2	0.03	NT	NT	DRY	DRY	DRY	NT
03/08/2004	Zinc, dissolved	2	0.03	NT	NT	DRY	NT	0.01	NT
09/27/2004	Zinc, dissolved	2	0.03	NT	NT	DRY	DRY	DRY	NT
03/17/2005	Zinc, dissolved	2	0.03	NT	NT	DRY	NT	0.01	NT
09/22/2005	Zinc, dissolved	2	0.03	NT	NT	DRY	DRY	DRY	NT
03/17/2006	Zinc, dissolved	2	0.03	NT	ΝT	DRY	DRY	DRY	NT
09/22/2006	Zinc, dissolved	2	0.03	NT	NT	DRY	NT	DRY	NT

APPENDIX E May 5, 1992 Semi-Annual Inspection Report

May 5, 1992

Nina Koger Solid Waste Section - IDNR Wallace State Office Building 900 E. Grand Ave. Des Moines, Iowa 50319

RE: SEMI-ANNUAL INSPECTION

AMES/STORY ENVIRONMENTAL LANDFILL

IDNR PERMIT NO. 85-SDP-13-91P

Dear Mrs. Koger:

In accordance with the Special Provisions of the Permit, a semi-annual inspection of the Ames/Story Environmental Landfill was conducted by Scott Renaud, P.E., on April 29, 1992.

At the time of the inspection, a certified landfill operator was on duty along with an equipment operator. A tracked loader is being used to spread, compact, and cover C&D waste as per the Development Plan. All wastes have been covered expect those received on this day. The site was well graded with no evidence of standing water. However, cover on the north slope is in need of repair due to erosion, and the siltation basin at the north end adjacent to the drainageway should be cleaned and reconstructed when weather conditions permit.

In addition to C&D wastes, the site is receiving a large quantity of bottom/fly ash from the City of Ames Electric Department which has been excavated from storage lagoons at the Municipal power plant. The working area was well managed and controlled; no windblown debris extended beyond the confines of the landfill. The access road is in good condition, however, the hard surface street extension and entrance have not yet been constructed as per the Development Plan and City requirements.

Top of landfill elevations in Trench No. 1 have now reached original ground surface elevation, and plans are being made for construction of Trench No. 2. All monitoring wells, monuments, and manholes for leachate collection are in good condition and operational. Landfill personnel are obtaining monthly measurements of leachate flow while CGA is obtaining monthly water level measurements in monitoring wells and quarterly water samples for testing.

Attached are copies of the test results for the fourth quarter sampling of the groundwater monitoring wells, aquifer monitoring wells, and surface water monitoring points. Test results for each quarter have been tabulated with respect to sampling point and parameter, and monthly water levels for groundwater and aquifer monitoring wells have been plotted on the attached graphs.

Page 2 - Semi-Annual Report Ames/Story Environmental Landfill

Also enclosed are two (2), 5.25" floppy diskettes containing tabular and graphical presentation of monitoring data. The mean and standard deviation have been determined for each upgradient monitoring well and compared to corresponding downgradient monitoring wells.

You will find that in a number of instances, test results in the downgradient well do not fall within two standard deviations above the mean value. Most of these findings can be categorized as follows:

- 1. Initial background concentrations of certain parameters were higher in downgradient monitoring wells than in the corresponding upgradient monitoring well.
- 2. Changes in detection limits. Where test results were below detection levels, a value of 0.5 x (detection level) was utilized in the computations. However, in some cases detection levels were increased (i.e., lead) which causes problems in the statistical analysis. In most of these cases, the concentrations were below detection levels for all four samples.
- 3. More recent tests results are less than previous levels. In most cases, an intermediate point is outside the statistical limit, but more recent results are within limits.
- 4. Increased levels in upgradient wells.

Test results which cannot be discounted for the reasons listed above are confined to MW's 25, 33 & 34 and SMP 3. All of these wells are located in the shallow alluvial sand a gravel formation along the drainageway at the north end of the site. A major interceptor sanitary sewer follows this drainageway which meanders through a heavily industrialized area of Ames. Since levels of various parameters in these downgradient wells exceeded levels in the corresponding upgradient well before waste was landfilled and have continued to increase, there is reason to suspect migration of these constituents from off-site and/or exfiltration from the sanitary sewer. The fact that levels of certain parameters in upgradient wells are increasing is also an indication of migration from off-site.

In accordance with IAC 567-103.2(6), this letter shall constitute notice to the IDNR that the analytical results for certain parameters in all downgradient monitoring wells do not fall within the control limits of two standard deviations above the mean parameter level in the corresponding up gradient well, and that the analytical results for certain parameters in all upgradient monitoring wells do not fall within two standard deviations of the mean parameter level for that monitoring well.

Page 3 - Semi-Annual Report Ames/Story Environmental Landfill

In accordance with IAC 567-103.2(7) the IDNR is to determine if additional sampling and testing is necessary. No major violations of operating rules and regulations or deviations from the approved Development Plan were noted at this time.

If you have any questions or if additional information is needed, contact Scott Renaud or myself at the CGA-Ames office.

Respectfully submitted, CLAPSADDLE-GARBER ASSOCIATES, INC.

Leslie S. Wolfe, P.E.

cc: Bill Fedeler, Ames/Story Environmental Landfill Jack Clemons, Field Office 5

APPENDIX F Water Elevation Data & Maps

	,	85	ENVIRONMENTA -SDP-13-91P VATER ELEVATION						·														
MW 22 GND.ELEV, FT. 950.5	MW 23 9 945.98		MW.25 MW 906.34 9	26 MW 27 50.51 950.51	MW 28 946.02	MW 29 A 945.61	AW.30 945.54	MW 31 941.43	MW.32 939.86	MW 33 906.32	MW 34 909.50	MW 35 916.19	MW 38 948.97	MW 37 949.49	MW38 936.59	MW 39 935.93	MW 40 933.07	MW 41 933.46	MW 42 940.64	MW 43 940.83	MW 6 942.88	MW 7 943,21	MW 8 942.76
DATE 945.7	4 937.19	926.29	898.63 94	12.06 922.90	NT	NT	911.79	921.48	908.97	898.46	899.88	Installed 2/96	Installed 2/96 In	etalled 2/96									
5/21/91 945.6 6/25/91 945.2	9 937.11 9 935.49	926.23 923.24	898.55 94 898.24 94	12.04 922.84 10.34 922.79	NT NT	NT NT	911.71 911.54	921.39 921.02	908.91 908.64 908.40	898.42 898.09 897.80	899.82 899.56	Installed 2/96	Installed 2/96 in	stalled 2/96									
7/05/91 943.9 8/31/91 943.5 10/14/91 941.3	7 932.42 7 925.81	919.36 918.64 916.88	897.71 93 896.97 93	37.48 922.32 37.36 922.16 30.24 919.15	NT NT NT	NT NT NT	911.39 911.24 908.69	920.40 919.71 918.13	908.27 906.67	897.60 896.82	899.20 898.77	Installed 2/96 Installed 2/96	Installed 2/96 in Installed 2/96 in Installed 2/96 in	stalled 2/96 stalled 2/96									
11/29/91 943.0 12/31/91 942.7 1/21/92 942.7	6 927.64	916.88 916.88 916.88	897.03 93	34.18 919.51 35.01 919.78 35.92 920.00	NT NT NT	NT NT	909.01 909.29 909.55	917.70 917.17 917.27	906.60 906.56 906.74	897.27 896.90 897.12	900.88	Installed 2/96	Installed 2/96 in Installed 2/96 in Installed 2/96 in	stalled 2/96									
2/17/92 941.9 3/19/92 943.5 4/22/92 943.8	9 931.71	916.88 924.15 926.15	897.82 93	35.72 920.07 38.73 921.02 39.22 921.60	NT NT NT	NT TN	909.69 910.30 910.65	917.11 917.45 919.94	906.76 907.81 908.46	897.16 897.69 898.35	901.90	Installed 2/96	Installed 2/96 in Installed 2/98 in Installed 2/96 in	stalled 2/96									
5/30/92 942.1 6/30/92 941.5 7/28/92 943.9	7 932.85 5 930.26	922.98 919.03 917.76	897.80 93 897.63 93	38.00 921.75 37.00 921.19 39.36 920.81	NT NT	TN TN TN	910.83 910.08 910.03	918.61 918.59 918.67	908.67 908.11 907.61	897.67 897.50 898.12	901.84 900.85	Installed 2/96 Installed 2/96	Installed 2/96 In Installed 2/96 In Installed 2/96 In	stalled 2/96 stalled 2/96									
8/22/92 943.2 9/30/92 941.1	1 930.42 5 928.20	919.53 919.44	897.84 93 897.61 93	88.92 920.65 17.26 919.53	NT NT	NT NT	910.24 909.39	918.34 917.89	907.63 907.03	897.71 897.50	901.25 900.31	Installed 2/96	Installed 2/96 In	stalled 2/96									
10/29/92 940.2 11/25/92 940.9 12/10/92 941.2	928.01 1 928.23	916.88 916.88 916.88	897.67 93 897.41 93	36.15 919.48 37.25 919.67 36.84 919.77	NT NT	NT TM	908.88 909.19 909.31	917.65 917.47 917.60	906.74 906.63 906.74	897.42 897.52 897.33	901.23 900.94	Installed 2/96 Installed 2/96	Installed 2/96 in Installed 2/96 in Installed 2/96 in	stalled 2/96 stalled 2/96									
1/30/93 941.3 2/22/93 939.5 3/4/93 939.4	5 929.28	916.88 916.88 916.88	B97.22 93	86.76 919.88 35.16 919.23 34.93 919.15	NT NT 939.32	NT NT 934,81	909.37 909.64 909.50	917.64 917.46 917.47	906.85 906.70 908.68	897.31 897.06 897.42	901.13	Installed 2/96	Installed 2/96 in Installed 2/96 in Installed 2/96 in	stalled 2/96									
4/27/93 941.7 5/27/93 942.3 6/30/93 942.3	9 936.40 2 935.88	927.66 928.16 927.10	897.84 93 898.20 93	99.11 920.27 38.67 920.71 38.11 920.94	940.68 941.12 941.12	937.01 936.61 936.51	911.30 911.64 911.84	921.03 924.19 924.63	908.66 909.76 909.96	897.68 898.06 898.28	903.30	Installed 2/96	Installed 2/96 in Installed 2/96 in Installed 2/96 in	stalled 2/96									
7/27/93 942.6 9/3/93 942.5	5 936.74 7 936.50	928.60 928.04	897.80 93 897.66 93	88.25 921.13 97.71 920.91	940.98 941.22	937.41 937.71	912.34 912.44	925.57 927.59	911.08 910.06	897.72 897.52 897.40	903.00 902.66	Installed 2/96 Installed 2/96	Installed 2/96 In	stalled 2/96									
9/21/93 941.8 10/25/93 941.4 11/22/93 940.3	5 934.13 9 933.26	925.01 924.40 923.10	897.29 93 897.08 93	36.79 920.67 36.16 920.21 35.15 919.61	940.82 940.07 938.82	937.41 936.26 935.05	912.40 912.24 911.40	923.05 923.88 921.63	909.56 909.36 908.86	697.16 896.96	901.45 901.38	Installed 2/96 Installed 2/96	Installed 2/96 in Installed 2/96 in Installed 2/96 in	stalled 2/96									
12/14/93 939.6 1/31/94 938.6 2/28/94 938.1	3 931.80	921.90 920.26 922.39		919.47 13.53 918.51 918.21	938.54 937.12 937.68	934.45 933.07 933.56	911.12 910.32 910.27	921,09 919.87 923.10	908.62 907.86 907.90	896.84 896.72 896.79	900.97 901.66	Installed 2/96 Installed 2/96	Installed 2/96 in Installed 2/96 in Installed 2/96 in	stalled 2/96 stalled 2/96				_					
3/16/94 938.7 4/30/94 938.7 5/17/94 939.0	9 933.28	923.90 922.40 922.68	897.04 93	918.39 92.59 916.56 91.65 915.45	938.46 938.37 938.52	934.13 933.73 933.75	910.94 910.34 910.54	926.53 923.26 924.47	908.50 908.80 908.54	896.92 896.90 896.82	901.02	Installed 2/96	Installed 2/96 in Installed 2/96 in Installed 2/96 in	stalled 2/96									
7/31/94 NT 8/23/94 938.7 9/16/94 938.8	931.38 9 932.73	918.76 918.24 918.94	897.23 93 897.10 93	31.62 916.31 31.87 916.53 31.95 916.56	939.13 938.16 938.50	933.41 934.01 934.13	909.82 909.94 910.04	919.63 919.23 919.03	907.45 907.24 907.12	897.11 896.92 896.98	901.98 901.90	Installed 2/96 Installed 2/96	Installed 2/96 in Installed 2/96 in Installed 2/96 in	stalled 2/96 stalled 2/96									
10/21/94 938.7 11/21/94 937.8	9 932.48 4 931.40	917.78 917.44	896.84 93 896.46 93	91.81 916.51 91.01 915.99	938.78 938.62	934.31 933.41	908.98 909.86	918.81 918.55	906.90 906.86	896.68 896.34	901.90 901.70	Installed 2/96 Installed 2/96	Installed 2/96 in Installed 2/96 in	stalled 2/96									
12/22/94 937.6 1/10/95 938.0 2/6/95 938.7	1 933.54 1 932.68	NT 917.44 917.44	896.79 93 896.85 93	30.81 916.01 31.21 916.11 30.11 915.71	938.52 937.74 937.56	933.11 933.41 932.88	909.74 910.14 910.12	918.13 918.57 918.43	906,51 906,76 906,58	896.48 896.57 896.72	901.84 901.70	Installed 2/96 Installed 2/96	Installed 2/96 in Installed 2/96 in Installed 2/96 in	stalled 2/96									
3/9/95 935.7 4/14/95 936.7 5/2/95 937.3	9 939.40	925.24 927.34	897.34 93	99.21 915.33 90.56 915.88 92.01 916.11	935.92 939.72 939.81	932.44 934.71 935.26	909.89 910.99 911.79	918.33 925.73 926.53	906.56 906.88 907.86	896.60 897.17 897.13	902.60 902.90	Installed 2/96 Installed 2/96	Installed 2/96 Ir Installed 2/96 Ir Installed 2/96 Ir	stalled 2/96				_					
6/2/95 937.6 8/23/95 937.3 9/12/95 936.7	9 930.38	925.44 919.14 918.54	897.14 93	92.51 916.23 30.74 915.91 29.67 915.51	938.42 938.17 937.11	933.86 933.66 932.76	910.95 909.94 909.39	923.18 919.83 919.53	908.66 907.21 906.94	897.02 896.97 896.78	901,70	Installed 2/96	Installed 2/96 tr Installed 2/96 tr Installed 2/96 tr	stalled 2/96									
10/31/95 935.7 11/20/95 935.5 12/7/95 935.2	7 928.01	Dry Dry Dry	896.68 92	27.01 914.71 27.11 914.53 27.11 913.91	937.12 936.87 936.85	932.21 932.51 932.26	908.79 908.79 908.62	918.43 918.23 917.98	906.26 906.26 906.01	896.72 896.52 896.45	901.75	Installed 2/96	Installed 2/96 in Installed 2/96 in Installed 2/96 in	stalled 2/96									
1/3/96 934.1 2/24/96 Plugged	9 927.78 930.68	Dry Dry Dry	896,56 N 896,94 Plug 896,89 Plug	914.11 ged Plugged	936.17 938.02 936.72	931.71 932.61 932.01	908.59 909.24 909.17	918.03 917.98 918.25	906.18 906.06 905.91	896.42 896.77 896.72	901.60	Installed 2/96 Installed 2/96	Installed 2/96 In Installed 2/96 In 930,77	stalled 2/96									
4/1/96 Plugged 6/20/96 Plugged	NT 937.78	Dry Dry	NT Plug 897.64 Plug	ged Plugged ged Plugged	NT 940.37	NT 934.81	NT 910.34	NT 927.03	NT 907.63	NT 897.47	NT 902.25	903.64 903.99	930.47 932.01	938.14 940.94									
9/12/96 Plugged 10/24/96 Plugged 11/18/98 Plugged	930,58	Dry Dry Dry	897.29 Plug 897.69 Plug	ged Plugged	938.62 938.22 939.27	933.71 933.41 933.91	909.76 909.76 909.68	919.48 920.03 928.03	906.76 906.46 906.76	897.17 897.12 897.52	901.78 901.70 902.00	903.24 903.34 903.91	932.37 932.49 932.37	941.59 941.19 941.14									
12/11/96 Plugget 01/29/97 Plugget 02/25/97 Plugget	933.88	Dry Dry	897.24 Plug	ged Plugged ged Plugged ged Plugged	938.94 937.42 937.57	934.21 932.96 932.88	911.04 910.64 910.54	926.83 924.93 923.08	907.81 907.41 907.26	897.22 897.07 897.22	901.80 901.55 901.88	903.64 903.09 903.67	932.42 932.39 931.62	941.14 940.79 940.14									
03/17/97 Plugged 04/29/97 Plugged 05/22/97 Plugged	937.98	Dry Dry Dry	896.54 Plug 897.54 Plug	ged Plugged ged Plugged ged Plugged	938.62 938.42	933.91 933.71	910.97 912.04 910.84	929.58 928.13 927.98	907.26 908.56 908.66	897.32 897.37 897.32	902.40 902.10 902.00	903.99 903.79 903.84	931.77 932.47 932.57	940.59 941.49 941.39									
06/18/97 Plugged 07/18/97 Plugged	933.08	Dry Dry	897.29 Plug 897.29 Plug	ged Plugged ped Plugged	938.37 938.32 937.82	933.61 933.41 933.01	910,39 909,84 909,19	924.13 921.23 919.63	908.26 907.56 906.86	897.12 897.12 896.92	901.80 901.60 901.50	903.59 903.49 903.04	932.55 932.47 932.42	941.59 941.74 941.64									
09/01/97 Plugged 10/27/97 Plugged	929.38	Dry Dry	897.04 Plug 897.14 Plug	ged Plugged ged Plugged ged Plugged	937.72 938.12	932.91 933.11	909.14 908.74	919.53 918.53	906.76 906.06	896.82 896.97	901.40 901.50	902.99 903.99	932.37 932.22	941.64 940.99									
11/20/97 Plugger 12/08/97 Plugger 01/13/98 Plugger	928.68	Dry Dry Dry	897.04 Plug 896.99 Plug	ged Plugged ged Plugged ged Plugged	937.67 937.87 937.72	932.96 933,06 932.89	908.64 908.74 908.84	918.53 918.43 918.43	906.16 906.06 905.76	896.87 896.92 896.82	901.55 901.90 901.95	902.74 902.79 902.69	932.42 932.42 932.27	940.99 940.99 940.69									
02/18/98 Plugget 03/05/98 Plugget 04/24/98 Plugget	934.78	Dry Dry 925.94	897.34 Plug 897.741 Plug	aed Pluaged	938.82 938.87 939.52	933.11 933.71 934.71	909.44 910.09 911.24	919.57 923.43 927.83	906.16 906.06 907.86	897.32 897.12 897.62	902.50 902.50 902.50	904.19 903.36 903.74	932.07 932.32 933.09	940.49 941.01 942.69									
05/18/98 Plugget 06/09/98 Plugget 07/23/98 Plugget	934.08	924.29 922.34 924.64	897.49 Ptug 897.89 Ptug	ged Plugged ged Plugged ged Plugged	938.62 938.82 938.82	934,01 934,11 934,11	910.52 910.14 910.99	925.73 930.93 925.23	907.88 907.66 908.71	897.32 897.72 897.62	902.00 901.90 901.80	903.21 904.29 903.29	932.92 933.12 934.17	941.99 942.19 942.99									
08/09/98 Ptugget 09/23/98 Ptugget 10/23/98 Ptugget	932,78	922.24 Dry 917.14	897,69) Plug	ged Plugged ged Plugged ged Plugged	938.62 938.02 938.02	934.11 933.51 933.61	910.54 945.54 909.14	922.53 919.03	908,26 906,46	897.52 897.22		903.19	933.77	942.59									
12/26/98 Plugger 01/08/99 Plugger	928.80 928.58	Dry Dry	897.09 Plug 896.94 Plug	ged Plugged ged Plugged	937.42 937.02	933.11 932.63	907.84 907.84	919.43 919.03	907.38 906.96	896.92 896.77	901.40 901.30	902.59 902.39	932.47 932.52	940.79 940.39									
03/21/99 Plugger 09/19/99 Plugger 03/10/2000 Plugger 06/20/2000 Plugger	1 930.53	Dry Dry	897.19 Plug 896.82 Plug	ged Plugged ged Plugged ged Plugged	938.82 939.02 936.97	933.61 933.71 931.66	908.29 909.14 907.09	922.43 919.13 917.33	906.31 906.46 905.46	897.10 897.02 896.67	902.20 901.20 902.10	902.89	932.57 933.17 932.02	940.74 942.09 939.79	007.55								
09/25/2000 Plugger 12/26/2000 Plugger	1 923.68 1 NT	NT 916.94 NT	896.47 Plug	ged Plugged ged Plugged ged Plugged	NT 938.02 NT	NT 931.61 NT	905.84 NT	916.68 NT	904.06 NT	NT 896,62 NT	NT 901.00 NT	NT 901.79 NT	NT 931.97 NT	NT 940.411 NT	907.59 913.64 910.24	916.28 914.51	922.27 919.47 920.29		918.84 918.32 918.94	921.43 919.98 920.73	931.78 931.73 931.33	917.81 917.76 917.61	905.06 905.31 905.11
03/05/2001 Plugge 09/02/2001 Plugge 03/15/2002 Plugge	933.79 930.78 927.15	922,31 Dry Dry	896.84 Pfug 897.09 Pfug 896.59 Pfug	ged Plugged ged Plugged ged Plugged	938.77 940.02 937.67	932.06 932.81 931.62	907.17 908.14 907.17	919.00 918.63 917.49	904.18 905.16 904.88	897.12 896.92 896.72		903.69 903.19 902.78	931.72 933.22 931.65	940.89 941.69 939.75	915.49 915.79 915.23	917.53 916.17	924.77 921.52 925.07		921.15 920.04 922.89	924.28 922.68 920.44	932.08 933.08 932.73	917.01 919.27 919.12	905.21 906.71 906.32
09/19/2002 Plugger 03/12/2003 Plugger 05/16/2003 Plugger	d 929.10 d 924.90	Dry Dry Dry	896.67 Plug 896.57 Plug 897.44 Plug	ged Plugged ged Plugged	939.76 936.29 939.12	932.56 930.82 932.61	907.86 906.34 908.04	918.22 916.92 927.18	904.51 904.68 904.68	896.51 896.41 897.22	901.69 901.37	902.68 902.91 903.39	933.04 930.79 931.47	941.43 938.89 940.09	922.74 918.24 920.59	924.85 919.46	923.32 922.37 926.67	916.05 914.98	920.29 919.14 922.04	922.51 921.59	934.38 932.46 934.43	920.29 919.09 919.81	907.38 906.23 906.66
09/25/2003 Plugge 03/08/2004 Plugge	927.87 d 938.89	Dry 928.29	896.45 Ptug 897.26 Ptug	ged Plugged ged Plugged	938.62 939.03 938.27	932.39 932.08 932.41	907.48 908.11 908.04	918.18 929.89 919.03	904.31 905.97 905.86	896.28 897.11 896.72	901.86 903.92	902.79 903.53 903.19	932.61 931.74 932.47	940.89 941.49 941.09	916.70 919.35 917.91	917.61 920.84	922,18 927,31	915.77 917.33	919.05 922.84 919.84	921.15 926.45 922.03	933.60 934.61	920.05 920.16 920.51	906.91 906.80 907.56
03/17/2005 Plugge 09/22/2005 Plugge	d 930.63 d 927.51	Dry 1	896.36 Plug 896.77 Plug	ged Plugged ged Plugged ged Plugged	938.29 938.73	932.36 933.47	908.09 907.67	921.42 919.25	905.05 905.23	896.16 896.52	902.80 901.78	903.21 903.10	931.62 932.62	940,68 941.16	918.88 916.87	920.36 918.15	923.42 926.60 923.87	916.98 916.42	921.63 920.24	924.51 922.58	934,28 933,82 934,50	920,11 920.66	906.96 907.43
03/20/2006 Plugge	924.11	Dry	000.42 MUG	ged Plugged	939.42	933.31	906.51	917.37	904.56	896.25	902.68	903.13	931.57	939.74	914.54	915.76	925.01	916.15	919.32	921.71	934.50	920.02	906.98

TOP PVC ELEV. 950.59 DATE 4/22/91 4.85 5/21/91 4.90 6/25/91 5.30 7/05/91 6.60	945.98 8.79	939.44	906.34	950.51	950.51	946.02	945.61	945.54	941.43		906.3	909.50	916.1	948.	97 949.49	936,59								
4/22/91 4.85 5/21/91 4.90 6/25/91 5.30	8.79			90.5-Assertation	99888	Y 20 (40 (20 (20 (20 (20 (20 (20 ((X.00X303333)	000 900 900 MT	92000000000000000000000000000000000000	939.86	300.3	2000000000	*****		(4) 4. 36. (40.56)	5000.00		933.07		940.64		942.88	943.21	942.76
6/25/91 5.30		13,15	7.71	8.45		NT	NT	33.75	19.95	30.89			NT	NT	NT						72-12/03/03/04/05/			Steller Reserved S.A. 14.
	8.87 10.49	13.21 16.20	7.79 8.10	8.47 10.17		NT NT	NT NT	33.83 34.00	20.04	30.95 31.22	7.9 8.2			NT NT	NT NT									
	13.42	20.08	8.42	13.03		NT	NT	34.15	21.03	31.46	8.5		NT	NT	NT									
8/31/91 7.02 9/10/91 7.91	13.56 16.01	20.80	8.63 8.80	13.15 15.92	28.35 29.60	NT NT	NT NT	34.30 35.50	21.72 22.10	31.59 32.21		10.30		NT	NT NT									i————
10/14/91 9.22	20.17	22.56	9.37	20.27	31.36	NT	NT	36.85	23.30	33.19	9.5	10.73	NT	NT	NT									
11/29/91 7.50 12/31/91 7.83	19.63	22.56 22.56	8.95 9.31	16.33 15.5	31.00	NT NT	NT NT	36.53 36.25	23.73	33.26 33.3			NT NT	NT NT	NT NT									
1/21/92 7.83	17.33	22.58	9.06	14.59	30.51	NT	NT	35.99	24.16	33,12	9.3	8.38	NT	NT	NT									
2/17/92 8.62 3/19/92 7	16,85 14,27	22.56 15.29	9.05 8.52	14,79 11,78		NT NT	NT NT	35.85 35.24	24.32 23.98	33.1 32.05	9.16 8.63			NT NT	NT NT									
4/22/92 6.7	13.43	13.29	7.87	11.29	28.91	NT	NT	34.89	21.49	31.4	7.9	6.46		NT	NT									
5/30/92 8.42 6/30/92 9.04	13.13 15.72	16.46 20.41	8.54 8.71	12.51	28.76 29.32	NT NT	NT NT	34.71 35.46	22.82	31.19 31.75	8.69		NT NT	NT NT	NT NT									
7/28/92 6.6	16.05	21.68	8.01	11.15	29.7	NT	NT	35.51	22.76	32.25	8.3	7.71	NT	NT	NT									
8/22/92 7.38	15.56 17.78	19.91	8.5 8.73	11.59 13.25		NT NT	NT NT	35.3 36.15		32.23 32.83				NT	NT									
9/30/92 9.44 10/29/92 10.33	18.86	22.56	8.80	14.36		NT	NT NT	36.66	23.78	33.12			NT NT	NT NT	NT NT									
11/25/92 9.65	17.97	22.56	8.67 8.93	13.26 13.67		NT NT	NT NT	36.35		33.23			NT	NT	NT									
12/10/92 9.38 1/30/93 9.26	17.75 17.69	22.56 22.56	8.95	13.75		NT	NT	36.23 36.17	23.83 23.79	33.12 33.01			NT NT	NT NT	NT NT									
2/22/93 11.04	16.70	22.56	9.12	15.35		NT	NT	35.90	23.97	33.16			NT	NT	NT									
3/4/93 11.14 4/27/93 8.80	16.74 9.58	22.56 11.78	8,76 8,50	15.58 11.40		6.70 5.34	10.80	36.04 34.24	23.96	33.20 31.20			NT NT	NT NT	NT NT									
5/27/93 8.27	10,10	11,28	8.14	11.84	29.80	4.90	9.00	33.90	17.24	30,10	8.20	6.20	NT	NT	NT									
6/30/93 8.22 7/27/93 7.94	10.64 9.24	12.34 10.84	7.94 8.54	12.40 12.26		4.90 5.04	9.10 8.20	33.70 33.20	16.80 15.86	29.90 28.78	8.60			NT NT	NT NT					ļ				
9/3/93 8.02	9.48	11.40	8,68	12.80	29.60	4.80	7.90	33.10	13.84	29,80	8.80	6.84	NT	NT	NT									
9/21/93 8.75 10/25/93 9.14	11.60	14.43	9.02 9.05	13.72 14.35	29.84 30.30	5.20 5.95	8.20 9.35	33.14 33.30	18.38 17.55	30.30 30.50			NT NT	NT NT	NT NT									
11/22/93 10.20	12.72	16.34	9.26	15.36	30.90	7.20	10.56	34.14	19.80	31.00	9.30	8.12	NT	NT	NT									
12/14/93 10.9 1/31/94 11.96	13.30 14.18	17,54 19,18	9.34 9.55	15.96 16.98	31.04	7.48 8.90	11.16 12.54	34,42 35.22	20.34 21.56	31.24 32.00	9.40		NT NT	NT NT	NT NT									
2/28/94 12.43	12.37	17.05	9.43	NT	32.30	8.34	12.05	35.27	18.33	31.98	9.53	7.84	NT	NT	NT									,——
3/16/94 11.8 4/30/94 11.80	11.04 12.70	15.54 17.04	9.30 9.30	17.78 17.92	32.12 33.95	7.56 7.65	11.48 11.88	34.60 35.20	14.90	31.36 31.06	9.40	7.45	NT	NT	NT									
5/17/94 11.5	12.70	16.76	9.36	18.86	35.06	7.5	11.86	35	16 96	31.32	9.5	NT	NT NT	NT NT	NT NT									
7/31/94 NT	14.6	20.68	9.11	18.89 18.64	34.2 33.98	6.89	12.2 11.6	35.72		32.41	9.2		NT	NT	NT									
8/23/94 11.8 9/16/94 11.74	13.25 12.86	21.2	9.24 9.2	18.56	33.95	7.86 7.52	11.48	35.6 35.5	22.2	32.62 32.74			NT NT	NT NT	NT NT									,
10/21/94 11.8	13.5	21.66	9.5	18.7	34	7.24	11.3	36.56	22.62	32.96	9.64	7.6	NT	NT	NT									
11/21/94 12.75 12/22/94 12.9	14.58 12.55	NT 22	9.88 9.7	19.5 19.7		7.4	12.2 12.5	35.68 35.8	22.88	33.35 33.35	9.98			NT NT	NT NT									
1/10/95 12.58	12.44	22	9.55	19.3		8.28	12.2	35.4	22.86	33.1	9.75	7.66	NT	NT	NT									
2/6/95 13.88 3/9/95 14.8	13.3	NT 22	9.49	20.4 21.3	34.8 35.18	8.46 9.1	12.73 13.17	35.42 35.65	23.1	33.28 33.3				NT NT	NT TN									
4/14/95 13.8	6.58	14.2	9	19.95	34.65	6.3	10.9	34.55	15.7	32.98	9.15	6.9	NT	NT	NT									
5/2/95 13.2 6/2/95 12.95	6.4 11.6	12.1	9.03 9.2	18.5	34.4 34.28	6.21 7.6	10.35 11.75	33.75 34.59	14.9 18.25	32 31,2				NT NT	NT NT									
8/23/95 13.2	15.6	20.3	9.2	19.77	34.6	7.85	11.95	35.6	21.6	32.65	9.3	7.8	NT	NT	NT									
9/12/95 13.87 10/31/95 14.85	16.62 17.8	20.9 Dry	9.67 9.5	20.84 23.5	35 35.8	8.91 8.9	12.85 13.4	36.15 36.75		32.92 33.6				NT NT	NT NT									
11/20/95 15.02	17.97	Dry	9.66	23.4	35.98	9.15	13.1	36.75	23.2	33.6	9.8	7.75	NT	NT	NT									
12/7/95 15.35 1/3/96 16.4	18.1 18.2		9.7 9.78	23.4 NT	36.6 36.4	9.17 9.85	13.35	38.92 36.95	23.45	33.85 33.7				NT	NT									
2/24/96 Plugged	15.3	Dry Dry		Plugged		8.03	13.5	36.3	23.45	33.8				NT NT	NT NT									-
3/22/96 Plugged	15.35	Dry	9,45	Plugged	Plugged	9.3	13.6	36.37	23.18	33.95	9.6	7.7	12.	18	.2 11.4									
4/1/96 Plugged 6/20/96 Plugged	NT 8.2	Dry Dry	8.7	Plugged Plugged	Plugged	5.65	10.8	NT 35.2	NT 14.4	32.23	8.85	7.25	12.5 12.5											
9/12/96 Plugged	14,02 15,4	Dry	9.05	Plugged	Plugged	7.4	11.9 12.2	35.78 35.78		33.1 33.4	9.1	7.72	12.9	5 16	.6 7.9									
10/24/96 Plugged 11/18/96 Plugged	7.75	21.82	8.65	Plugged Plugged	Plugged	6.75	11.7	35.76	21.4 13.4	33.1										-				
12/11/96 Plugged	9.95	17.48	8.95	Plugged	Plugged	7.08	11.4	34.5	14.6	32.05	9.	7.7	12.5	16.	55 8.35									
01/29/97 Plugged 02/25/97 Plugged	12.1 9.75	18.6 19.85	8.95	Plugged Plugged	Plugged	8.6 8.45	12.65 12.75	34.9 35		32.45 32.6	9.2													
03/17/97 Plugged	8	15.35	9.8	Plugged	Plugged			34.57	11.85	32.6		7.1	12.	2 17	.2 8.9									
04/29/97 Plugged 05/22/97 Plugged	11.2 11.45	13.8	8.85	Plugged Plugged	Plugged	7.4 7.6	11.7 11.9	33.5 34.7	13.3	31.3 31.2	8.9	7.4	12.3 12.3											
06/18/97 Plugged	12.9	15.9	9.05	Plugged	Plugged	7.65	12	35.15	17.3	31.6	9.:	7.7	12.	3 16.4	12 7.9									
07/18/97 Plugged 08/29/97 Plugged	14.45 16.55	19.2 21.1	9.05	Plugged Plugged	Plugged	7.7 8.2	12.2 12.6	35.7 36.35		32.3 33	9.1		12. 13.1							ļ				— —
09/01/97 Plugged	16.6	21.1	9.3	Plugged	Plugged	8.3	12.7	36,4	21.9	33.1	9.	8.1	13.	2 18	.6 7.85									
10/27/97 Plugged 11/20/97 Plugged	17.7 17.9			Plugged Plugged	Plugged Plugged	7.9 8.35	12.5 12.65	36.8 36.9	22.9 22.9	33.8 33.7	9.3 9.4		12. 13.4											— —
12/08/97 Plugged	17.3	dry	9.3	_Plugged	Plugged	8,15	12.55	36.8	23	33.8	9.	7.6	13.	4 16,	55 8.5									
01/13/98 Plugged 02/18/98 Plugged	15.5 11.85		8.9	Plugged Plugged	Plugged	8.3 7.2	12.72 12.5	36.7 36.1	21.88	34.1 33.7	9.		13.				ļ		ļ					
03/05/98 Plugged	11.2	dry	9	Plugged	Plugged	7.15	11.9	35.45	18	33.8	9.:		12.8	3 16.0	55 8.48									
04/24/98 Plugged 05/18/98 Plugged	8.95 11.9		8.6 8.85	Plugged Plugged	Plugged	6.5 7.4	10.9 11.6	34.3 35.02		32		7 7.5									ļ <u>.</u>			
06/09/98 Plugged	11.6	17.1	8.45	Plugged	Plugged	7.2	11.5	35.4	10.5	32.2	8.0	7.6	11.	9 15.0	7.3									
07/23/98 Plugged 08/09/98 Plugged	11.9 13.2	17.2	0.66	Plugged	Plugged Plugged	7.2 7.4	11.5 11.5	34.55 35	16.2 18.9	31.15 31.6														
09/23/98 Plugged		dry		Plugged	Plugged	8	12.1		i — — — — —		1	1			1			<u> </u>	 	<u> </u>				
10/23/98 Plugged 12/26/98 Plugged	17 17.18	22,3	9 25	Plugged	Plugged Plugged Plugged Plugged	8.5	12 12.5	36.4 37.7	22.4	33.4 32.5	9.		13. 13.											
01/08/99 Plugged	17.4	Dry	9.4	Plugged	Plugged	9	12.98	37.7	22.4	32.9	9.5	8.2	13.	B 16.	45 9.1				 		 			
03/21/99 Plugged 09/19/99 Plugged	14.95 15.45		9.1	Plugged Plugged	Plugged	7.2	12	37.25 36.4	19	33,55 33,4					.4 8.75 .8 7.4					I				
03/10/2000 Plugged	18.35	Dry	9.52	Plugged	Plugged	9.05	13.95	38.45	24.1	34.4	9.6	7.4								 				
06/20/2000 Ptugged	NT 22.3	NT	NI :	! Plugged	i Pluaged I	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	29		10.8		21.8	19.4		25.4	
09/25/2000 Plugged 12/26/2000 Plugged	NT	TN	NT TN	Plugged	Plugged Plugged	NT I	NT 14	39.7 NT	24.75 NT	35.8 NT	NT.	7 8.5 NT	NT		17 9.08 NT	22.95 26.35				22,32	20.85		25.45 25.6	
03/05/2001 Plugged	12.19	17.13	9.5	Plugged	Plugged Plugged	7.25	13.55	38.37	22.43	35.68	9.	2 6.2	12.	5 17.:	25 8.6	21.1	17.4	8.3	16.95	19.49	16.55	10.8	26.2	37.55
09/02/2001 Plugged 03/15/2002 Plugged	15.2	DRY Dry	9.25	Plugged Plugged	Plugged Plugged	8.35	12,8 13,99	37.4 38.37		34.7 34.98	9.					20.8 21.36		11,55	17.8 16.74				23.94 24.09	
09/19/2002 Plugged	16.88	DRY	9,67	Plugged	Plugged	6.26	13.05	37.68	23.21	35.35	9.8	7.81	13.5	1 15.	93 8.06	13.85	11.08	9.75	17.41	20.35	18.32	8.5	22.92	35.38
03/12/2003 Plugged 05/16/2003 Plugged	21.08 6.8		9.77	Plugged Plugged	Plugged Plugged	9.73 6.9	14,79	39.2 37.5		35.18 35.2					18 10.6 '.5 9.4					21.5 18.6	19.24 15.65		24.12 23.4	
09/25/2003 Plugged	18 11	nev	0.80	Pfugged	Plugged	7.4	13.22	38.06	23.25	35.55	10.0	7.64	13.	4 16.	36 8.6	19.89	18.32	6.4 10.89	17.69	21.59	19.68	9.28	23.16	35.85
03/08/2004 Plugged 09/23/2004 Plugged	7.09	11.15 DRY	9.08	Physical	Plugged Plugged	6.99 7.75	13.53 13.2	37.43 37,5		33,89					23 8 5.5 8.4	17.24 18.68		5.76	16.13					
03/17/2005 Plugged	15.35	DRY	9.98	Plugged	Plugged	7.73	13.25	37.45	20.01	34,81	10.1	6.7	12.9	8 17.	35 8.81	17.71	15.57	5.47	16.48	19.01	16.32	9.06		35.8
09/22/2005 Plugged 03/20/2006 Plugged	18.47 21.87	DRY	9.57	Plugged	Plugged Plugged	7.29 6.6	12.14 12.3	37.87 39.03		34.63 35.3		8 7.72 7 6.82			35 8.33 2.4 9.75		17.78 20.17	9.2	17.04	20.4		8.38	22,55	35,33
09/21/2006 Plugged			9,65	Plugged	Plugged	6.26	10.87	38.14	21.05	35.95	9.			4 15.	25 6.47	19.77	16.81	8.06 6.18			19.12			

APPENDIX G

Leachate Elevation & Thickness Assessment Data

Top of Liner Elevation Data Leachate Thickness (feet) Leachate Surface Elevation LPZ-T1-1 LPZ-T2-1 LPZ-T3-1 LPZ-T4-1 LPZ-T1-1 LPZ-T2-1 LPZ-T3-1 LPZ-T4-1 LPZ-T1-1 LPZ-T2-1 LPZ-T3-1 LPZ-T4-1 922.72 922.31 PVC ELEV, FT. 925.85 932.62 922.31 PVC ELEV, FT. 922.72 925.85 932.62 21 11 11 Liner Depth 16 911.72 909.85 911.62 911.31 DATE Liner Elev 05/27/2003 909.85 911.62 911.72 911.31 05/27/2003 05/27/2003 909.85 911.62 913.22 914.91 1.5 3.6 911.62 912.32 913.91 05/28/2003 909.85 911.62 911.72 911.31 05/28/2003 0 0.6 2.6 05/28/2003 909.85 909.85 911.62 911.72 911.31 06/23/2003 911.62 06/23/2003 0 0 0.61 3.1 06/23/2003 909.85 912.33 914.41 909.85 911.62 911.72 07/31/2003 2.6 911.62 912.32 913.91 07/31/2003 911.31 0 0 07/31/2003 909.85 0.6 911.62 912.32 913.51 08/13/2003 909.85 911.62 911.72 911.31 08/13/2003 0 0 0.6 2.2 08/13/2003 909.85 911.62 911.72 911.31 10/13/2003 0 909.85 1.8 10/13/2003 909.85 911.62 912.22 913.11 10/13/2003 0 0.5 11/05/2003 909.85 911.62 911.72 911.31 11/05/2003 0 0 0.3 2.3 11/05/2003 909.85 911.62 912.02 913.61 911.72 12/08/2003 911.62 911.31 0 1.9 12/08/2003 909.85 911.62 912.22 913.21 12/08/2003 909.85 0 0.5 909.85 911.62 911.72 911.31 01/05/2004 909.85 911.62 911.72 911.31 01/05/2004 0 0 0 0 01/05/2004 02/10/2004 909.85 911.62 912.12 913.21 02/10/2004 909.85 911.62 911.72 911.31 02/10/2004 0 0 0.4 1.9 911.62 911.72 911.31 03/08/2004 0.4 0 03/08/2004 910.25 911.62 912.12 913.77 03/08/2004 909.85 0.4 2.46 911.62 912.22 914.01 04/08/2004 909.85 911.62 911.72 911.31 04/08/2004 0 0 0.5 2.7 909.85 04/08/2004 05/28/2004 910.35 911.62 912.32 913.91 05/28/2004 909.85 911.62 911.72 911.31 05/28/2004 0.5 0 0.6 2.6 06/18/2004 911.72 06/18/2004 2.5 06/18/2004 909.95 911.62 912.52 913.81 909.85 911.62 911.31 0.1 0 0.8 909.85 911.62 912.12 913.21 07/22/2004 909.85 911.62 911.72 911.31 07/22/2004 0 0 0.4 1.9 07/22/2004 911.72 08/24/2004 910.05 911.62 912.32 913.11 08/24/2004 909.85 911.62 911.31 08/24/2004 0.2 0 0.6 1.8 911.62 911.72 911.31 09/28/2004 0 911,62 09/28/2004 909.85 0.2 910.05 912.02 912.31 0.3 09/28/2004 10/28/2004 910.05 911.62 912.02 912.91 10/28/2004 909.85 911.62 911.72 911.31 10/28/2004 0.2 0 0.3 1.6 909.85 11/10/2004 912.22 11/10/2004 911.62 911.72 911.31 0.1 0 913.01 1.7 11/10/2004 909.95 911.62 0.5 911.62 912.02 03/17/2005 909.85 911.62 911.72 911.31 03/17/2005 0.3 03/17/2005 910.75 913.76 0.9 0 2.45 911.72 06/22/2005 06/22/2005 909.75 911.62 912.12 913.51 06/22/2005 909.85 911.62 911.31 -0.1 0 0.4 2.2 911.72 914.34 09/27/2005 909.85 911.62 911.31 09/27/2005 0.07 0 0.46 3.03 909.92 911.62 912.18 09/27/2005 909.8 911.62 12/16/2005 909.85 911.62 911.72 911.31 12/16/2005 -0.05 12/16/2005 NT 913.47 Ö 2.16 911.72 911.62 03/17/2006 03/17/2006 909.85 911.62 911.72 913.31 03/17/2006 909.85 911.31 0 909.85 911.72 2.74 910.08 911.62 912.18 914.05 06/30/2006 911.62 911.31 06/30/2006 0.23 0 0.46 06/30/2006 911.72 09/22/2006 910.00 911.62 912.17 915.05 09/22/2006 909.85 911.62 911.31 09/22/2006 0.15 0 3.74 0.45

-	.31							!															-					
LPZ-T4-1	922.3		7.4	8.4	7.9	8.4	8.8	9.5	8.7	9.1	11	9.1	8.54	8.3	8.4	8.5	9.1	9.5	10	9.4	9.3	8.55	8.8	7.97	8.84	6	8.26	7.26
LPZ-T3-1	922.72		9.5	10.4	10.39	10.4	10.4	10.5	10.7	10.5	11	10.6	10.6	10.5	10.4	10.2	10.6	10.4	10.7	10.7	10.5	10.7	10.6	10.54	LΝ	11	10.54	10.55
LPZ-T2-1	932.62		21	21	21	21	21	21	21	21	21	21	21	21	21	21	21	21	21	21	21	21	21	21	21	21	21	21
LPZ-T1-1	925.85		16	16	16	16	16	16	16	16	16	16	15.6	16	15.5	15.9	16	15.8	15.8	15.8	15.9	15.1	16.1	15.93	16.05	16	15.77	15.85
	TOP PVC ELEV.	DATE	05/27/2003	05/28/2003	06/23/2003	07/31/2003	08/13/2003	10/13/2003	11/05/2003	12/08/2003	01/05/2004	02/10/2004	03/08/2004	04/08/2004	05/28/2004	06/18/2004	07/22/2004	08/24/2004	09/28/2004	10/28/2004	11/10/2004	03/17/2005	06/22/2005	09/27/2005	12/16/2005	03/17/2006	06/30/2006	09/22/2006

APPENDIX H City of Ames Leachate Testing Results

Water and Pollution Control Department

300 East Fifth Street, Building 1 Ames, IA 50010 Phone 515-239-5150 ★ Fax 515-239-5251

TO:

Bill Fedeler, Ames-Story Environmental Landfill - Site 2

FROM:

Karla Tebben/Winnie Gleason, Pretreatment Coordinators Haula

DATE:

October 24, 2006

Jim McElvogue

SUBJECT:

Pretreatment Reporting: Fall 2006 (Permit No. 7093-6)

Listed below are analytical results of the wastewater sampled at your facility's Site 2 on September 20, 2006. All tested parameters are within permit limits. However, COD and TKN results exceed surcharge limits. If these parameters continue to be in surcharge range, the monthly surcharge for the landfill may increase. Surcharge calculations and billing will be addressed in separate correspondence. Thank you for your cooperation with the pretreatment program.

Parameter	Permit Limits/ Surcharge (mg/L)	Recommended Maximum Discharge Concentrations (mg/L)	40CFR Part 445 Maximum Daily Limit (mg/L)	40CFR Part 445 Monthly Average Limit (mg/L)	Results (mg/L)
pH, units	6.0 - 10.0		6.0-9.0	6.0-9.0	7.2
TKN	250/40				50
CBOD₅	/250	1,500			< 30
COD	2,500/250	·	140	37	560
Zinc		10.0	0.20	0.11	< 0.03

Complete the bottom portion of this page and return one copy to us by November 6, 2006.

PROCESS CHANGES SINCE June 22, 2006:

COMPLIANCE STATEMENT: Based on my inquiry of the person(s) directly responsible for managing compliance with the pretreatment program, I certify that, to the best of my knowledge, there has been no unreported discharge in violation of the pretreatment program since June 22, 2006.

NAME

DATE

DATE

Water and Pollution Control Department

300 East Fifth Street, Building 1
Ames, IA 50010
Phone 515-239-5150 ★ Fax 515-239-5251
http://www.city.ames.ia.us/waterweb

July 25, 2006

Mr. Bill Fedeler Ames-Story Environmental Landfill P.O. Box 2483 Ames, IA 50010

Re: Surcharge Billing

Dear Mr. Fedeler:

Enclosed is the calculation of the Ames-Story Environmental Landfill surcharge rate based on the samples taken over the last six months. Also included is an estimate of the monthly surcharge based on the average flow of the previous six months. The surcharge rate will be \$0.33/100 cubic feet beginning with the next billing cycle. The surcharge rate will be recalculated in January 2007 using the most recent sampling data.

If you have questions, please contact Karla Tebben or me at 239-5150. We appreciate your cooperation with the surcharge and pretreatment programs.

Yours very truly,

Winifred G. Gleason, P.E.

Environmental Engineer

Water and Pollution Control Department

/bas

Enclosures

pc:

Todd-Whipple Mike Wheelock Jim McElvogue

07/24/06

Ames-Story Environmental Landfill SURCHARGE CALCULATION

SAMPLE SET RESULTS (mg/l)

DATE	COD	TSS	NH3
2-May-05	370	40	36
26-Sep-05	730	62	42
22-May-06	450	14	42
AVERAGE	517	39	40
NORMAL	<u>250</u>	300	<u>40</u>
EXTRA STRENGTH	267	(261)	0

CALCULATION OF SURCHARGE RATE:

	EXTRA STRENGTH mg/L	STRENGTH SURCHARGE RATE PER mg/l	SURCHARGE RATE PER 100 CF
COD	267	0.00125	\$0.33
TSS	(261)	0.00219	\$0.00
NH3/TKN	0	0.00437	\$0.00
TOTAL SUR	CHARGE RATE		\$0.33

CALCULATION OF SURCHARGE:

ESTIMATED SURCHARGE (\$ per month):	\$1.00
SURCHARGE RATE(\$/100 CF):	\$0.33
AVERAGE MONTHLY VOLUME (IOO CF):(Estimate)	3

Water and Pollution Control Department

300 East Fifth Street, Building 1 Ames, IA 50010 Phone 515-239-5150 ★ Fax 515-239-5251

March 27, 2006

Mr. Bill Fedeler Ames-Story Environmental Landfill P.O. Box 2483 Ames, IA 50010

Re: Pretreatment Sampling Expenses

Dear Mr. Fedeler:

During the period July 1 through December 31, 2005, the City performed pretreatment sampling at the Ames-Story Environmental Landfill. The cost associated with the sampling is \$291.30.

This amount will be billed to you from the City Finance Department. A detailed summary of the costs is enclosed.

Please give me a call at 515-239-5150 if you have any questions concerning this matter.

Yours very truly,

Winifred G. Gleason, P.E.

Pretreatment Program Co-Coordinator Water and Pollution Control Department

/bas

Enclosure

pc: Linda Stole

Todd Whipple Jim McElvogue

Pretreatment Sampling

24-Mar-06

Environmental Landfill North

Travel Time (min): 22

Trip (miles): 5.9

	Person	nel	Maintenar	ce Prep	Lab Prep/Pr	rocessing	Site Time		<u>Sampling</u>	#		An	<u>alysis</u>	Total
Date	Employee	Rate	Time (min)	Cost	Time (min)	Cost	(min)	Cost*	Equipment	used	Cost	Lab No.	Lab Charge	Charges
9/26/2005 Subtotal	TW SH	\$34.97 \$19.89	7	\$0.00 \$2.32 \$0.00 \$2.32	15	\$8.74 \$0.00 <u>\$0.00</u> \$8.74	15 15	\$21.56 \$12.27 \$0.00 \$33.83	Truck/Van Sampler/F.M. S&H (UHL)	1	\$3.25 \$0.00 \$0.00 \$3.25	52260	\$0,00	\$33.55 \$14.59 <u>\$0.00</u> \$48.14
Notes:	No flow in ma	nhole		·		·		•			V - 1		75.00	V10.114
Subtotal Notes:				\$0.00 \$0.00 <u>\$0.00</u> \$0.00		\$0.00 \$0.00 <u>\$0.00</u> \$0.00		\$0.00 \$0.00 \$0.00 \$0.00	Truck/Van Sampler/F.M. S&H (UHL)		\$0.00 \$0.00 <u>\$0.00</u> \$0.00		\$0.00	\$0.00 \$0.00 <u>\$0.00</u> \$0.00
Subtotal Notes:				\$0.00 \$0.00 \$0.00 \$0.00		\$0.00 \$0.00 \$0.00 \$0.00		\$0.00 \$0.00 \$0.00 \$0.00	Truck/Van Sampler/F.M. S&H (UHL)		\$0.00 \$0.00 \$0.00 \$0.00		\$0.00	\$0.00 \$0.00 <u>\$0.00</u> \$0.00
Subtotal Notes:				\$0.00 \$0.00 \$0.00 \$0.00		\$0.00 \$0.00 \$0.00 \$0.00		\$0.00 \$0.00 \$0.00 \$0.00	Truck/Van Sampler/F.M. S&H (UHL)		\$0.00 \$0.00 <u>\$0.00</u> \$0.00		\$0.00	\$0.00 \$0.00 <u>\$0.00</u> \$0.00
Subtotal Notes:				\$0.00 \$0.00 \$0.00 \$0.00		\$0.00 \$0.00 \$0.00 \$0.00		\$0.00 \$0.00 \$0.00 \$0.00	Truck/Van Sampler/F.M. S&H (UHL)		\$0.00 \$0.00 <u>\$0.00</u> \$0.00		\$0.00	\$0.00 \$0.00 <u>\$0.00</u> \$0.00
Subtotal Notes:				\$0.00 \$0.00 \$0.00 \$0.00		\$0.00 \$0.00 <u>\$0.00</u> \$0.00		\$0.00 \$0.00 \$0.00 \$0.00	Truck/Van Sampler/F.M. S&H (UHL)		\$0.00 \$0.00 <u>\$0.00</u> \$0.00		\$0.00	\$0.00 \$0.00 <u>\$0.00</u> \$0.00
Total				\$2.32		\$8.74		\$33.83		٠	\$3.25		\$0.00	\$48.14

Pretreatment Sampling

24-Mar-06

7rip (miles): 6

1ravel Time (min): 26

Total		\$2.32		64.71 \$	\$42.06		\$13.30	00.891\$	\$243.16
Subtotal Subtotes:		00.0\$ 00.0\$ 00.0\$ 00.0\$		00.0\$ 00.0\$ 00.0\$ 00.0\$	00.0\$ 00.0\$ 00.0\$	TruckVan Sampler/F.M. S&H (UHL)	00 0\$ 00 0\$ 00 0\$ 00 0\$	00'0\$	00.0\$ 00.0\$ 00.0\$
Subtotals:		00'0\$ 00'0\$ 00'0\$ 00'0\$		00.0\$ 00.0\$ 00.0\$	00.0\$ 00.0\$ 00.0\$	Truck/Van Sampler/F.M. S&H (uHL)	00.0\$ 00.0\$ 00.0\$	00.0\$	00'0\$ 00'0\$ 00'0\$ 00'0\$
Subtotal Isolotes:		00'0\$ 00'0\$ 00'0\$ 00'0\$		00.0\$ 00.0\$ 00.0\$	00'0\$ 00'0\$ 00'0\$	Truck/Van Sampler/F.M. S&H (UHL)	00.0\$ 00.0\$ 00.0\$ 00.0\$	00.0\$	00'0\$ 00'0\$ 00'0\$ 00'0\$
Subtotal Subtes:		00.0\$ 00.0\$ 00.0\$		00'0\$ 00'0\$ 00'0\$	00.0\$ 00.0\$ 00.0\$	Truck/Van Sampler/F.M. S&H (UHL)	00.0\$ 00.0\$ 00.0\$ 00.0\$	00.0\$	00.0\$ 00.0\$ 00.0\$
Subfotal Notes:		00.0\$ 00.0\$ 00.0\$		00.0\$ 00.0\$ 00.0\$	00.0\$ 00.0\$ 00.0\$	TruckVan SamplerN-M. H&S Hun) H&S	00.0\$ 00.0\$ 00.0\$	00.0\$	00'0\$ 00'0\$ 00'0\$ 00'0\$
79.76.705 WT \$34.97 \$8.99 Subtotal Sub		72.2\$ 00.0\$	30	67.71\$ 00.0\$ 00.0\$	90.2 \\$ 00.0\$ 25.31\$ 82.32\$	Truck/Van Sampler/F.M. S&H (UHL) 1	06.6\$ 00.0\$ 00.01\$	\$168.00 0HL \$110.00	09.301\$ 57.51\$ 00.01\$ 61.645\$
Personnel Date Employee Rate	Maintenanc	gen 9 ec	Lab Prep/Pro	is <u>pnissac</u> Tir m) tsoO	†so0	<u>Sampling</u> # Equipment used	tsoo	Analysis Lab No. Lab Charge	lstoT segnsdO

Water and Pollution Control Department

300 East Fifth Street, Building 1
Ames, IA 50010
Phone 515-239-5150 ♦ Fax 515-239-5251
http://www.city.ames.ia.us/waterweb

January 16, 2006

Mr. Bill Fedeler Ames-Story Environmental Landfill P.O. Box 2483 Ames. IA 50010

Re:

Surcharge Billing

Dear Mr. Fedeler:

Enclosed is the calculation of the Ames-Story Environmental Landfill surcharge rate based on the samples taken over the last six months. Also included is an estimate of the monthly surcharge based on the average flow of the previous six months. The surcharge rate will be \$0.33/100 cubic feet beginning with the next billing cycle. The surcharge rate will be recalculated in July 2006 using the most recent sampling data.

If you have questions, please contact Karla Tebben or me at 239-5150. We appreciate your cooperation with the surcharge and pretreatment programs.

Yours very truly,

Winifred G. Gleason, P.E.

Environmental Engineer

Water and Pollution Control Department

Dross

/bas

Enclosures

pc:

Todd Whipple Mike Wheelock Jim McElvoque

Ames-Story Environmental Landfill SURCHARGE CALCULATION

SAMPLE SET RESULTS (mg/l)

DATE 20-Sep-04 2-May-05	COD 450 370	TSS 6.2 40	NH3 39 36
26-Sep-05	730	62	42
AVERAGE	517	36	39
NORMAL	<u>250</u>	<u>300</u>	<u>40</u>
EXTRA STRENGTH	267	(264)	(1)

CALCULATION OF SURCHARGE RATE:

	EXTRA STRENGTH <u>mg/L</u>	STRENGTH SURCHARGE RATE PER mg/l	SURCHARGE RATE PER 100 CF
COD	267	0.00125	\$0.33
TSS	(264)	0.00219	\$0.00
NH3/TKN	(1)	0.00437	\$0.00
TOTAL SURCH	ARGE RATE		\$0.33

CALCULATION OF SURCHARGE:

AVERAGE MONTHLY VOLUME (IOO CF): (Estimate 3
SURCHARGE RATE(\$/100 CF): \$0.33

ESTIMATED SURCHARGE (\$ per month): \$1.00

APPENDIX I

Explosive Gas Monitoring Results

	SAMPLING DATE	AMPLING DATE: De		cember 6, 2005	
Reference* Location	Combustible	%Oxygen	CO ppm	H2S ppm	
MW28/MW29	0	20.2 to 20.8	0	0	
MW36/MW37	0	20.2 to 20.8	0	0	
MW35	0	20.2 to 20.8	0	0	
MW33/MW25	0	20.2 to 20.8	0	0	
MW32/MW24	0	20.2 to 20.8	0	0	
MW30/MW23	0	20.2 to 20.8	0	0	
MW34	0	20.2 to 20.8	0	0	
MW31	0	20.2 to 20.8	0	0	
Trailer	0	20.2 to 20.8	0	0	
MW6/MW7/MW	8 0	20.2 to 20.8	0	0	
MW38/39	0	20.2 to 20.8	0	0	
MW40/MW41	0	20.2 to 20.8	0	0	
MW42/MW43	0	20.2 to 20.8	0	0	

	SAMPLING DATE	Ξ: M	March 30, 2006	
Reference* Location	Combustible	%Oxygen	CO ppm	H2S ppm
MW28/MW29	0	20.6	0	0
MW36/MW37	0	20.6	0	0
MW35	0	20.6	0	0
MW33/MW25	0	20.6	0	0
MW32/MW24	0	20.6	0	0
MW30/MW23	0	20.6	0	0
MW34	0	20.6	0	0
MW31	0	20.6	0	0
Trailer	0	20.6	0	0
MW6/MW7/MW	8 0	20.6	0	0
MW38/39	0	20.6	0	0
MW40/MW41	0	20.6	0	0
MW42/MW43	0	20.6	0	0

Reference* Location	SAMPLING DATE Combustible	: %Oxygen	June 30, 200 CO ppm	6 H2S ppm
MW28/MW29	0	20.7	0	0
MW36/MW37	0	20.7	0	0
MW35	0	20.7	0	0
MW33/MW25	0	20.7	0	0
MW32/MW24	0	20.7	0	0
MW30/MW23	0	20.7	0	0
MW34	0	20.7	0	0
MW31	0	20.7	0	0
Trailer	0	20.7	0	0
MW6/MW7/MW	8 0	20.7	0	0
MW38/39	0	20.7	0	0
MW40/MW41	0	20.7	0	0
MW42/MW43	0	20.7	0	0

	SAMPLING DATE	PLING DATE: September 2		2, 2006	
Reference* Location	Combustible	%Oxygen	CO ppm	H2S ppm	
MW28/MW29	0	20.8	0	0	
MW36/MW37	0	20.8	0	0	
MW35	0 .	20.8	0	0	
MW33/MW25	0	20.8	0	0	
MW32/MW24	0	20.8	0	0	
MW30/MW23	0	20.8	0	0	
MW34	0	20.8	0	0	
MW31	0	20.8	0	0	
Trailer	0	20.8	0	0	
MW6/MW7/MW	/8 0	20.8	0	0	
MW38/39	0	20.8	0	0	
MW40/MW41	0	20.8	0	0	
MW42/MW43	0	20.8	0	0	

- 5		
= =		
.		
= =		
.		
1		
= ■		
-		